摘要:
To widen the dynamic range of a dielectric barrier ionization detector (BID), an insertion length of a sample injection tube 16 into a second gas passage 11 is set so that a sample-gas ejection port 16a is located on the downstream side of a dilution gas from the upper edge of a collector electrode 14 at which a DC electric field concentrates. By this setting, although the detection sensitivity is lower than in the case where the sample-gas ejection port 16a is placed to maximize the detection sensitivity, the decrease in the detection sensitivity to high-concentration samples is reduced since absorption of light by the sample gas is alleviated. Consequently, the sample-concentration range with a linearly-changing sensitivity becomes wider than that of conventional BIDs. Although the detection sensitivity becomes lower than that of conventional BIDs, a detection sensitivity adequately higher than that of FIDs can be ensured.
摘要:
A light source emits excitation light to discharge gas that flows through a dielectric tube. A ground electrode unit includes a first ground electrode and a second ground electrode arranged at a distance from each other in an axial direction of the dielectric tube. A high-voltage electrode is provided between the first ground electrode and the second ground electrode. A first distance between the first ground electrode and the high-voltage electrode is shorter than a second distance between the second ground electrode and the high-voltage electrode. A cover is provided on an outer wall of the dielectric tube at a position between the first ground electrode and the high-voltage electrode. The light source is arranged to emit excitation light such that an optical axis thereof is directed toward a position where the cover is not provided on the outer wall of the dielectric tube.
摘要:
A BID includes: a discharger (2) including a dielectric pipe (8) and a pair of electrodes (14, 16) attached on an outer wall of the dielectric pipe, the pair of electrodes (14, 16) being arranged at a distance from each other in a direction along a central axis of the dielectric pipe (8), the discharger (2) being arranged so that plasma generating gas is introduced from a first end of the dielectric pipe (8) and configured to generates dielectric barrier discharge inside the dielectric pipe (8) to generate plasma; a detection section (4) including a sample gas introduction section (31) and a collection electrode (26) for collecting ions, the detection section (4) being configured to ionize components in the sample gas using light emitted from the plasma generated in the discharger (2) and to detect the generated ions by collecting them using the collection electrode (26); and a voltage supply (6; 6′) for generating a potential difference between the pair of electrodes (14, 16).
摘要:
Provided is a discharge ionization current detector that is highly durable and yet can be produced at a low cost. An electrode structure 19 consisting of a dielectric-coated metal tube 16, with an insulator-coated metal wire 18 included therein, is inserted from above into a first gas passage including a dielectric tube 10. The metal tube 16 is connected to the ground on the upstream side of the first gas passage. One end of the metal wire 18 is extracted from the upstream side of the first gas passage to the outside and connected to a bias power source 33. An area which is not covered with the insulator is provided at the other end of the wire 18. This area is arranged in a second gas passage, which extends from the downstream end of the first gas passage. A metal electrode consisting of a flanged metal tube 28 is placed in the second gas passage and connected to an ion current detecting circuit 34. In the present configuration, the second gas passage, which should be heated to high temperatures, has fewer portions at which metallic parts are in contact with insulating members. This is advantageous for improving the durability of the device and reducing the used amount of expensive, highly heat-resistant sealing members and/or insulating members.
摘要:
A BID includes: a discharger (2) including a dielectric pipe (8) and a pair of electrodes (14, 16) attached on an outer wall of the dielectric pipe, the pair of electrodes (14, 16) being arranged at a distance from each other in a direction along a central axis of the dielectric pipe (8), the discharger (2) being arranged so that plasma generating gas is introduced from a first end of the dielectric pipe (8) and configured to generates dielectric barrier discharge inside the dielectric pipe (8) to generate plasma; a detection section (4) including a sample gas introduction section (31) and a collection electrode (26) for collecting ions, the detection section (4) being configured to ionize components in the sample gas using light emitted from the plasma generated in the discharger (2) and to detect the generated ions by collecting them using the collection electrode (26); and a voltage supply (6; 6′) for generating a potential difference between the pair of electrodes (14, 16).
摘要:
A discharge ionization current detector of the present invention is used for a detector for a gas chromatograph and suitable for analyzing high-boiling components. A discharge ionization current detector 10 is mainly constituted by a plasma generating section 20 and an ion collecting section 30. Regarding the ion collecting section 30, an ion collecting electrode 31 and a bias electrode 32 are arranged, and furthermore, an insulating member made of sapphire or aluminum oxide having a purity equal to or greater than 99.5% is arranged between the ion collecting electrode 31 and the bias electrode 32.
摘要:
A dielectric barrier discharge ionization detector (BID) capable of achieving a high level of signal-to-noise ratio in a stable manner is provided. In a BID having a high-voltage electrode, upstream-side ground electrode and downstream-side ground electrode circumferentially formed on the outer circumferential surface of a cylindrical dielectric tube, a heater for heating the cylindrical dielectric tube or tube-line tip member attached to the upper end of the same tube is provided. Increasing the temperature of the cylindrical dielectric tube by this heater improves the stability of the electric discharge, whereby the amount of noise is reduced and a high level of signal-to-noise is achieved.
摘要:
The dielectric barrier discharge ionization detector includes: a dielectric tube through which a plasma generation gas is passed; a high-voltage electrode formed on the outer wall of the dielectric tube; two ground electrodes and formed on the outer wall of the dielectric tube, with the high-voltage electrode in between; a voltage supplier for applying AC voltage between the high-voltage electrode and each ground electrode to generate electric discharge within the dielectric tube and thereby generate plasma from the plasma generation gas; and a charge-collecting section for detecting an ion current formed by ionized sample-component gas produced by the plasma. The distance between one ground electrode and the high-voltage electrode is longer than a discharge initiation distance between these two electrodes, while the distance between the other ground electrode and the high-voltage electrode is shorter than the discharge initiation distance between these two electrodes.
摘要:
A dielectric barrier discharge ionization detector includes: a discharging section for generating plasma from argon-containing gas by electric discharge, including a dielectric tube on the outer wall of which a high-voltage electrode connected to AC power source as well as upstream-side and downstream-side ground electrodes and are circumferentially formed; and a charge-collecting section for ionizing sample-gas components by the plasma and detecting ion current formed by ionized components. The dielectric tube is made of a material whose resistivity is 1.0×1013 Ωcm or lower. Furthermore, the detector satisfies at least one of the following conditions: the upstream-side ground electrode is longer than a ground electrode length which allows creeping discharge between the high-voltage electrode and a tube-line tip member; or the downstream-side ground electrode is longer than a ground electrode length which allows creeping discharge between the high-voltage electrode and the charge-collecting section.
摘要:
An analysis device comprising a discharge ionization current detector, a plasma gas supply section, a sample gas supply section, a flow rate setting condition holding section and a gas flow rate setting means controller. The flow rate setting condition holding section holds, as a flow rate setting condition, a relationship between a sample gas supply flow rate from the sample gas supply section and a supply flow rate of plasma gas to be set with respect to the sample gas supply flow rate and the gas flow rate controller is configured to set a plasma gas supply flow rate from the plasma gas supply section to a flow rate according to the sample gas supply flow rate, based on the flow rate setting condition held in the flow rate setting condition holding section.