摘要:
Systems and methods for use in introducing samples to an analytical instrument. In particular, systems and methods to process moisture sensitive/reactive gases and then analyze by an analytical device/instrument using also a liquid calibrant sample. Suitable analytical devices include, for example, an inductively coupled plasma-mass spectrometer or inductively coupled plasma-optical emission spectrometer.
摘要:
An ion mobility gas detector apparatus including a detector core, an inlet gas path, an exhaust gas path, a source of diluent gas, and at least one or more sensors for measuring temperature, pressure and humidity of gas streams. Further included is a mixing mechanism adapted to mix at least first and second gas streams in response to one or more sensor measurements. A controller is provided for applying drive signals to the detector core.
摘要:
Micro discharge devices, methods, and systems are described herein. One device includes a non-conductive material, a channel through at least a portion of the non-conductive material having a first open end and a second open end, a first electrode proximate to a first circumferential position of the channel between the first open end and the second open end, a second electrode proximate to a second circumferential position of the channel between the first open end and the second open end, a discharge region defined by a portion of the channel between the first electrode and the second electrode, an optical emission collector positioned to receive an optical emission from the discharge region, and a discharge shielding component between the discharge region and the optical emission collector.
摘要:
An aging treatment is performed by using cleaning gas obtained by mixing inert gas, as an impurity, to plasma gas. Plasma generation by dielectric-barrier discharge is performed until a predetermined period of time has elapsed by applying high AC voltage to an electrode while supplying the cleaning gas to a dielectric tube from a gas inlet.
摘要:
An ion mobility spectrometer has a pair of electrodes and midway along the drill chamber. A high field is applied between the electrodes and sufficient to modify ions in the region of the electrodes such that they move at a different rate towards the collector plate. This is used to modify the time of flight of selected ions or ion clusters and enable identification of ambiguous peaks on the IMS spectrum.
摘要:
The present invention provides a corona discharge device, comprising a first electrode including: a first substantially cylindrical inner chamber portion and a second substantially conical inner chamber portion in communication with the first inner chamber portion, wherein the second inner chamber portion has a cross sectional area that gradually enlarges in a direction away from the first inner chamber portion. The present invention also provides an ion mobility spectrometer comprising: an ionization region; and the corona discharge device disposed in the ionization region. With the above construction and structure, the ion mobility spectrometer of the present invention has the advantages that extraction of ions is facilitated and a life time of the corona electrode is lengthened. In addition, the focusing and storing electrode is used to effectively shield interference of a corona discharge pulse, and to push and focus sample ions. A designed voltage control solution is used to achieve mobility differentiating of ions, while a corona pulse is shielded to prevent variation in an ion quantity due to the corona pulse, thereby achieving an effect of stabilizing mobility spectrum lines.
摘要:
A discharge ionization current detector using a low-frequency dielectric barrier discharge with an improved S/N ratio is provided. A current detector 20 is disposed between an excitation high-voltage power source 8 and a discharge electrode 5 to detect a discharge current flowing in pulses due to plasma generation. The detection signal of the current detector 20 and an output signal from a current amplifier 18 for amplifying an ion current are inputted into an output extraction unit 21. The output extraction unit 21 detects a precipitous-rise portion of the discharge current detection signal and generates a trigger signal, and then extracts an ion current signal for a predetermined time period from the trigger signal. This can remove an influence of a noise appearing in a signal during a time period where no plasma emission is generated, thereby improving the S/N ratio of the detection signal.
摘要:
An ion mobility spectrometer has a pair of electrodes and midway along the drill chamber. A high field is applied between the electrodes and sufficient to modify ions in the region of the electrodes such that they move at a different rate towards the collector plate. This is used to modify the time of flight of selected ions or ion clusters and enable identification of ambiguous peaks on the IMS spectrum.
摘要:
A discharge ionization current detector using a low-frequency dielectric barrier discharge with an improved S/N ratio is provided. A current detector 20 is disposed between an excitation high-voltage power source 8 and a discharge electrode 5 to detect a discharge current flowing in pulses due to plasma generation. The detection signal of the current detector 20 and an output signal from a current amplifier 18 for amplifying an ion current are inputted into an output extraction unit 21. The output extraction unit 21 detects a precipitous-rise portion of the discharge current detection signal and generates a trigger signal, and then extracts an ion current signal for a predetermined time period from the trigger signal. This can remove an influence of a noise appearing in a signal during a time period where no plasma emission is generated, thereby improving the S/N ratio of the detection signal.
摘要:
An ion mobility spectrometer has a pair of electrodes (13A) and (13B) midway along the drift chamber (7). A high field is applied between the electrodes (13A) and (13B) sufficient to modify (e.g. fragment) ions in the region of the electrodes such that they move at a different rate towards the collector plate (8) . This is used to modify the time of flight of selected ions or ion clusters and enable identification of ambiguous peaks on the IMS spectrum.