Abstract:
A light emission surface having a substantially single surface in a liquid crystal display 1 is designed so as to be opposite to a rear of a liquid crystal panel 2 or a rear of an optical member 5 through an air layer. Thus, it is possible to provide a liquid crystal display that can prevent a heat accumulation in a liquid crystal panel without any drop of brightness, and a light source device used in the liquid crystal display.
Abstract:
A housing for holding and fixing components of a liquid crystal display device is composed of a pair of frame members each having the same shape. Four sides of the side face of each frame member are formed such that an outer face section positioned at the outer side when combined and an inner face section positioned at the inner side when combined are stepped to each other, and a cut section is formed between the outer face section and the inner face section. The side face section of the frame member of the housing is formed to be stepped as described above, so that the strength and assembling property are enhanced, thereby being capable of preventing deterioration in display quality caused by the displacement of the position and space of the components.
Abstract:
A double-sided LCD device includes a double-sided backlight unit, front and rear LCD panels, and first and second circuit boards connected to the front and rear LCD panels, respectively, by TCPs. Each TCP has first and second slits for bending the TCP. The TCP connecting the first circuit board to the front LCD panel is bent at the second slit, whereas the TCP connecting the second circuit board to the rear LCD panel is bent at the first slit, to achieve overlapping arrangement of the first and second circuit boards as viewed parallel to the LCD panels.
Abstract:
A double-sided, direct-irradiation type backlight unit has a structure of capable of reducing the luminance irregularity and improve the luminance efficiency. The backlight unit has a scatter-reflection rod member 101 between each adjacent two of elongate lamps. The scatter-reflection rod member 101 has a symmetric shape with respect to the line passing the center thereof in X-direction, and that passing the center thereof in Y-direction. The light emitted from the elongate lamp 102 in X-direction is reflected by the scatter-reflection-rod member 101 and then travels in the direction toward the front- and rear-side diffusion plates 106.
Abstract:
A housing for holding and fixing components of a liquid crystal display device is composed of a pair of frame members each having the same shape. Four sides of the side face of each frame member are formed such that an outer face section positioned at the outer side when combined and an inner face section positioned at the inner side when combined are stepped to each other, and a cut section is formed between the outer face section and the inner face section. The side face section of the frame member of the housing is formed to be stepped as described above, so that the strength and assembling property are enhanced, thereby being capable of preventing deterioration in display quality caused by the displacement of the position and space of the components.
Abstract:
A relatively small-diameter aperture fluorescent lamp is manufactured easily with high yield and at low cost. An aperture portion is formed in a manner that a thread-like member is inserted into a glass tube having an ultraviolet ray reflection layer and a phosphor layer formed on its inner surface, the glass tube is bent in a predetermined shape by using a bending jig, the thread-like member is pressed to the phosphor layer formed in a predetermined region in the bending member side of the glass tube while both ends thereof are pulled tight, the thread-like member is reciprocated, and phosphor of the phosphor layer in this region is exfoliated.
Abstract:
A method for attaching a cable to a fluorescent tube is provided which is capable of making narrow a width of a plaque edge portion by saving a redundant space in a connected portion in which a fluorescent tube is connected to cables, of improving reliability by enhancing mechanical strength at the connected portion and of reducing counts of components required to reinforce the connected portion and the number of processes necessary for assembly. Each of a pair of cables for supplying power to the fluorescent tube is connected to each of ends of the fluorescent tube. The connected portion in which an end of the fluorescent tube is connected to the cable is molded with a resin to form a resin-molded portion. A holding member fabricated by an injection molding machine is attached to the connected portion. A reflector used to reflect light emitted from the fluorescent tube is integrally attached.
Abstract:
A backlight unit includes a lamp housing, a plurality of elongate lamps received therein, and a cooling member having a heat-absorbing part and a heat-radiating part. The heat-absorbing part includes a plurality elongate heat-absorbing portions having a light reflecting function and arranged alternately with the elongate lamps. The heat-radiating part extends from the elongate heat-absorbing portions of the heat-absorbing part and is disposed outside the lamp housing. The cooling member has a heat-radiation function as well as a luminescence assistance function.
Abstract:
A relatively small-diameter aperture fluorescent lamp is manufactured easily with high yield and at low cost. An aperture portion is formed in a manner that a thread-like member is inserted into a glass tube having an ultraviolet ray reflection layer and a phosphor layer formed on its inner surface, the glass tube is bent in a predetermined shape by using a bending jig, the thread-like member is pressed to the phosphor layer formed in a predetermined region in the bending member side of the glass tube while both ends thereof are pulled tight, the thread-like member is reciprocated, and phosphor of the phosphor layer in this region is exfoliated.
Abstract:
A light emission surface having a substantially single surface in a liquid crystal display 1 is designed so as to be opposite to a rear of a liquid crystal panel 2 or a rear of an optical member 5 through an air layer. Thus, it is possible to provide a liquid crystal display that can prevent a heat accumulation in a liquid crystal panel without any drop of brightness, and a light source device used in the liquid-crystal display.