摘要:
In general, according to one embodiment, an ultrasonic diagnostic apparatus includes an image generating unit configured to generate medical images from a multislice which covers an area including the heart of an object. Each slice is almost perpendicular to the long axis of the heart. Each medical image is a short-axis image of the heart. A series of medical images captured at different times correspond to each slice. The embodiment generates a polar map associated with myocardial motion indices from a plurality of medical images. A polar map is segmented into segments. The embodiment calculates the average value of motion indices for each segment. The utility of an average value depends on the range covered by each segment. This embodiment matches the boundary of a segment with the position of a vein. This prevents a deterioration in the utility of average values due to the influences of veins.
摘要:
When displaying a plurality of images in different conformations in relation to information of a tissue motion typified by a heart wall motion, support information which is used to rapidly and easily visually confirm a relative positional correspondence relationship between an MPR image, a polar mapping image, and a three-dimensional image is generated and displayed. A marker indicative of a desired local position is set and displayed as required. Further, a position corresponding to the set or changed marker may not be present on the MPR image. In such a case, the MPR image always including a position corresponding to the set or changed marker is generated and displayed by automatically adjusting a position of an MPR cross section.
摘要:
An ultrasonic imaging apparatus comprises an ultrasonic probe, an image-processing part, a received signal intensity-adjusting part, and a display part. The ultrasonic probe three-dimensionally transmits/receives ultrasonic waves. The image-processing part generates a first ultrasonic image along a plane intersecting the scanning lines of ultrasonic waves, based on the signals obtained by transmitting/receiving of the ultrasonic waves. The signal intensity-adjusting part changes the intensity of the signals on the scanning lines passing through a brightness adjustment range for brightness adjustment set on the first ultrasonic image. The image-processing part generates a second ultrasonic image, based on the signal changed by the signal intensity-adjusting part. The display part displays the second ultrasonic image.
摘要:
When displaying a plurality of images in different conformations in relation to information of a tissue motion typified by a heart wall motion, support information which is used to rapidly and easily visually confirm a relative positional correspondence relationship between an MPR image, a polar mapping image, and a three-dimensional image is generated and displayed. A marker indicative of a desired local position is set and displayed as required. Further, a position corresponding to the set or changed marker may not be present on the MPR image. In such a case, the MPR image always including a position corresponding to the set or changed marker is generated and displayed by automatically adjusting a position of an MPR cross section.
摘要:
Position coordinate information of each point three-dimensionally forming a tissue corresponding to a diagnosis target at each time phase is obtained, a quantitative value for evaluating the movement of the tissue corresponding to the diagnosis target is calculated by using the position information, and the result is output in a predetermined form. Accordingly, since the quantitative value for evaluating the movement is calculated by using the three-dimensional position coordinate information without converting wall movement information obtained by a three-dimensional tracking process into two-dimensional information, it is possible to provide medical information with a higher degree of precision.
摘要:
An ultrasonic diagnostic apparatus generates volume data by performing three-dimensional scan of a three-dimensional region with an ultrasonic wave. An input unit sets or changes at least one of a plurality of correlated scan conditions for the three-dimensional scan. A determination unit determines the other scan conditions of the plurality of scan conditions on the basis of at least one scan condition that is set or changed. A display unit displays at least one of the set or changed scan condition and the determined scan conditions.
摘要:
Position coordinate information of each point three-dimensionally forming a tissue corresponding to a diagnosis target at each time phase is obtained, a quantitative value for evaluating the movement of the tissue corresponding to the diagnosis target is calculated by using the position information, and the result is output in a predetermined form. Accordingly, since the quantitative value for evaluating the movement is calculated by using the three-dimensional position coordinate information without converting wall movement information obtained by a three-dimensional tracking process into two-dimensional information, it is possible to provide medical information with a higher degree of precision.
摘要:
An ultrasound diagnostic apparatus 1 comprises an ultrasonic probe 2 for transmitting the ultrasound while three-dimensionally scanning, and receiving ultrasound reflected from biological tissue, an image processor 5 (and a signal processor 4) for generating image data for an MPR image based on results received thereof, an information memory 6 for storing cross-sectional-position information D showing a cross-section of this MPR image, a display part 81, and a controller 9. The image processor 5 generates image data for the new MPR image for the relevant cross-sectional position, based on the cross-sectional position shown in the cross-sectional-position information D1 obtained when the MPR image was obtained in the past and the received results obtained by the new three-dimensional scan performed with the ultrasonic probe 2. The controller 9 causes the display part 81 to display the new MPR image.
摘要:
An ultrasonic imaging apparatus comprises an ultrasonic probe, an image-processing part, a received signal intensity-adjusting part, and a display part. The ultrasonic probe three-dimensionally transmits/receives ultrasonic waves. The image-processing part generates a first ultrasonic image along a plane intersecting the scanning lines of ultrasonic waves, based on the signals obtained by transmitting/receiving of the ultrasonic waves. The signal intensity-adjusting part changes the intensity of the signals on the scanning lines passing through a brightness adjustment range for brightness adjustment set on the first ultrasonic image. The image-processing part generates a second ultrasonic image, based on the signal changed by the signal intensity-adjusting part. The display part displays the second ultrasonic image.
摘要:
In general, according to one embodiment, an ultrasonic diagnostic apparatus includes an image generating unit configured to generate medical images from a multislice which covers an area including the heart of an object. Each slice is almost perpendicular to the long axis of the heart. Each medical image is a short-axis image of the heart. A series of medical images captured at different times correspond to each slice. The embodiment generates a polar map associated with myocardial motion indices from a plurality of medical images. A polar map is segmented into segments. The embodiment calculates the average value of motion indices for each segment. The utility of an average value depends on the range covered by each segment. This embodiment matches the boundary of a segment with the position of a vein. This prevents a deterioration in the utility of average values due to the influences of veins.