摘要:
An improved acoustic characteristic adjustment device comprises signal processing units including high frequency convolution arithmetic sections, low frequency convolution arithmetic sections, and delay sections. The device further comprises: an operation section from which a listener inputs a target characteristic in order to adjust a desired acoustic characteristic; an impulse characteristic control section; and a delay time control section. The impulse characteristic control section calculates impulse response data to effect convolution arithmetics. The delay time control section calculates alignment delay times necessary for sounds emitted from the speakers to reach a listening position. The delay time control section also calculates correction times for compensating various phase deviations. Times obtained by correcting the alignment delay times with the correction times are set as the delay times of the delay sections, respectively.
摘要:
An impulse response measurement with high precision is made possible with a simple device or signal processing, even if sampling clocks on the transmitting side and the receiving side are asynchronous at the time of measuring an impulse response of a measured system. An impulse response measuring method includes an input signal generating step of generating an input signal of an arbitrary waveform to be input to a measured system by using a synchronization signal having a first sampling clock frequency, a signal converting step of performing conversion on a measured signal output from the measured system into a discrete value system by using a synchronization signal having a second sampling clock frequency, and an inverse filter correcting step of correcting at least a phase of an inverse filter which is an inverse function of a function showing a frequency characteristic of the input signal according to a frequency ratio of the first sampling clock frequency and the second sampling clock frequency. Then, the impulse response of the measured system is measured using the inverse filter after correction.
摘要:
A device 1 for measuring a propagation time of a sound wave comprises a sound source means 11 and a calculation means 12. The sound source means 11 outputs a time stretched pulse as a sound source signal input to a speaker 3. The calculation means 12 calculates a cross-correlation function of the time stretched pulse and the sound signal which is output from the speaker 3 and is received in a microphone 4. Based on the cross-correlation function, the propagation time of the sound wave between the speaker 3 and the microphone 4 is found.
摘要:
Resonant frequencies f2 and f3 detected in a resonant space are determined as center frequencies of a dip. Based on measurement values at a speaker and a microphone in the resonant space, a basic amplitude frequency characteristic Ca and a target amplitude frequency characteristic Cd are found. A smoothness degree on a frequency axis is larger in the target amplitude frequency characteristic Cd than the basic amplitude frequency characteristic Ca. A damping level and quality factor of the dip are determined based on a difference between the basic amplitude frequency characteristic Ca and the target amplitude frequency characteristic Cd in the center frequencies f2 and f3 of the dip and frequencies near the center frequencies.
摘要:
Resonant frequencies f2 and f3 detected in a resonant space are determined as center frequencies of a dip. Based on measurement values at a speaker and a microphone in the resonant space, a basic amplitude frequency characteristic Ca and a target amplitude frequency characteristic Cd are found. A smoothness degree on a frequency axis is larger in the target amplitude frequency characteristic Cd than the basic amplitude frequency characteristic Ca. A damping level and quality factor of the dip are determined based on a difference between the basic amplitude frequency characteristic Ca and the target amplitude frequency characteristic Cd in the center frequencies f2 and f3 of the dip and frequencies near the center frequencies.
摘要:
A device 1 for measuring a propagation time of a sound wave comprises a sound source means 11 and a calculation means 12. The sound source means 11 outputs a time stretched pulse as a sound source signal input to a speaker 3. The calculation means 12 calculates a cross-correlation function of the time stretched pulse and the sound signal which is output from the speaker 3 and is received in a microphone 4. Based on the cross-correlation function, the propagation time of the sound wave between the speaker 3 and the microphone 4 is found.
摘要:
In an image forming apparatus, a cleaning blade cleans residual toner adhered on the surface of an image carrier and a sound sensor collects a sound generated inside a casing of the image forming apparatus. A determining unit determines, based on the sound collected by the sound sensor, whether cleaning failure has occurred in the cleaning blade. The determining unit makes the determination based on at least intensity of a first sound component that is a sound component of a first frequency and intensity of a second sound component that is a sound component of a second frequency different from the first frequency.
摘要:
In an image forming apparatus, a cleaning blade cleans residual toner adhered on the surface of an image carrier and a sound sensor collects a sound generated inside a casing of the image forming apparatus. A determining unit determines, based on the sound collected by the sound sensor, whether cleaning failure has occurred in the cleaning blade. The determining unit makes the determination based on at least intensity of a first sound component that is a sound component of a first frequency and intensity of a second sound component that is a sound component of a second frequency different from the first frequency.