摘要:
A plurality of nozzle rows are formed in a nozzle plate, and nozzle electrodes for generating a deflecting field are provided for every two nozzle rows. Each electrode is attached to the nozzle plate so as to locate between the corresponding adjacent two nozzles. Ink reception absorption bodies are embedded in the bottom surface of the electrodes. Refresh ink droplets deflected by the deflecting field travels along U-turn paths and impinge on the ink reception absorption bodies.
摘要:
When an refresh ink droplet ejected from a nozzle and deflected by an inclined electric field impinges on a orifice electrode/ink receiving member, electric charge is discharged from the refresh ink droplet, thereby an electric current is generated. A current-voltage converter/amplifier detects the electric current and outputs a detection signal. A defective-condition determining circuit determines an ejection condition of a nozzle element based on voltage value of the detection signal.
摘要:
A recording head 200 has a plurality of nozzle orifices aligned in a row extending in a first direction. The recording head 200 is arranged with the nozzle orifices in confrontation with a recording medium P. The recording medium P is moved in a second direction B with respect to the recording head 200. Also, ink droplets ejected from the nozzle orifices are charged to a charged amount that corresponds to deflection amount of the ink droplets. The charged ink droplets are deflected in a direction perpendicular to a main scanning line. The plurality of ink droplets ejected from the plurality of nozzle orifices impinge on the same pixel position or at a nearby position so that it is possible to impinge multiple droplets at the same pixel position or a nearby position. As a result, it is possible to back up broken nozzles and to reduce recording distortion.
摘要:
An orifice electrode/ink receiving member 11 is attached to an orifice plate 13 that is attached to a recording head module 10. An ink absorbing member 111 is embedded in a lower surface of the orifice electrode/ink receiving member 11. A recording ink droplet 14 ejected through an orifice 12 is deflected as needed by an angled electric field 85 and then impinges on a recording sheet 60 to form a recording dot 70. On the other hand, a refresh ink droplet 15 is deflected by the angled electric field 85 and impinges on the ink absorbing member 111 of the orifice electrode/ink receiving member 11 after flying in a U-turn path. In this configuration, the ink absorbing member 111 provided to the orifice electrode/ink receiving member 11 collects ink, so that there is no need to increase a gap between the recording head module 10 and the recording sheet 60 so much in order to dispose the ink absorbing member 111, preventing decrease in recording precision and paper jam. Also, it is possible to perform the ink refresh operation using a minimum amount of ink anytime needed without stopping recording operations.
摘要:
When positively charged ink droplets 608 from a defective nozzle impact a negatively charged deflector electrode 320, the positive charge on condenser 609 flows to the ground via a FET 618 of a photo-coupler 610. As a result, the electric discharge occurs by an amount equivalent to the charging amount of the ink droplets 608 clinging on the electrode 320. Because a switching signal 606 is “1”, the ON resistance of the photo-coupler 610 is large, and the ON resistance of the FET 620 of the photo-coupler 612 is small. Accordingly, the discharge due to the charged ink droplets 608 is detected as a large detection voltage and amplified by an operational amplifier 613 . Because the charger voltage of the condenser 609 is static and has no noise, even when the detection output 615 is highly amplified, noise during the detection is suppressed.
摘要:
As shown in FIG. 7(e), an electric field is generated at timing T3 at which an ink droplet 14 is divided, end moves the negative ions toward a main ink portion 14m. As shown in FIG. 7(e′), a resultant main ink droplet 14M has an increased charging amount of −3 q, and a satellite ink droplet 14S has a decreased charging amount of −6 q. When the main ink droplet 14M and the satellite ink droplet 14S have the mass of 1 m and Qs, respectively, then the relative charging amounts of the main ink droplet 14M and the satellite ink droplet 14S are both −3. Hence, the deflection amount of the satellite ink droplet 14S is approximately equal to the deflection amount of the main ink droplet 14M. Accordingly, the satellite ink droplet 14S and the rain ink droplet 14M impact the recording sheet 60 on the same spot or on the extremely close spots, thereby forming a single dot.
摘要:
An ink jet recording device 1 includes a plurality of head modules 101 each formed with a plurality of nozzles. The ink jet recording device 1 prints a test pattern using the all nozzle of the head modules 101. Precise positions of dots forming the test pattern are detected, based on which positional shifts of the head modules 101 are calculated. The deflection amount and ink ejection timing for each head module 101 are changed based on the detected positional shift. In this manner, positional shifts of the assembled head modules 101 are electrically corrected without mechanically changing the physical positions of the head modules 101.
摘要:
A computer portion 201 of a printer includes a memory storing a printer driver software 201a and nozzle profile data 211. The printer driver software 201a includes a raster image processor (RIP) 203. When the RIP 203 receives document data 209, the RIP 203 converts the document data 209 into bitmap data 210 which is one dot/one bit data for 300 data/inch. Then, the nozzle data converting portion 204 converts the bitmap data 210 into driving data 212 based on the nozzle profile data 211. At this time, each bit of the bitmap data 210 is replaced by 16 bits. That is, the data amount is increased to 16 times of the bitmap data 210. Accordingly, fine control of ink ejection can be achieved.
摘要:
During a printing operation, a recording device is switched from a normal mode to a refresh ejection mode so as to temporarily increase an ejection frequency. A refresh ink droplet ejected in the refresh ejection mode is deflected to impinge on an ink collector. Recording ink droplets ejected in the refresh ejection mode are deflected and impinge on a recording sheet at positions that are shifted by gradually smaller distances.
摘要:
When ink droplets are ejected, angled or splashed where a plurality of minute ink droplets are generated, angled or splashed ink clings on an electrode 401, 402 and increases the amount of electric current conducted therethrough. Hence, the defectiveness of ink ejection can be detected by monitoring the amount of the electric current. When the defectiveness of ink ejection is detected, ejection data D is retrieved and updates the ejection data D based on a condition register S, and set to a defect register E. When the defect register E has only one element that takes a condition value of 1 indicating defectiveness, the corresponding nozzle is identified as defective. The restoring means reallocates dots, which have been originally allocated to the defective nozzle, to neighboring nozzle.