摘要:
In a vehicular alternator having a permanent magnet protection mechanism, each magnet holder of a non-magnetic characteristic if a rectangle prism shape accommodates each permanent magnet disposed between adjacent claw poles. The magnet holders are connected in a ring shape along a circumferential direction of the alternator by using each connecting plate part which extends from each magnet holder in approximate circumferential direction toward an inner side of and at a front tip part of each claw pole. The connecting plate parts and the magnet holders are made from a non-magnetic plate by cutting and bending. Making the surfaces and the connecting plate part of each magnet holder from the non-magnetic plate by cutting and bending provides a high accuracy magnet position in the alternator with low manufacturing cost.
摘要:
In a vehicular alternator having a permanent magnet protection mechanism, each magnet holder of a non-magnetic characteristic if a rectangle prism shape accommodates each permanent magnet disposed between adjacent claw poles. The magnet holders are connected in a ring shape along a circumferential direction of the alternator by using each connecting plate part which extends from each magnet holder in approximate circumferential direction toward an inner side of and at a front tip part of each claw pole. The connecting plate parts and the magnet holders are made from a non-magnetic plate by cutting and bending. Making the surfaces and the connecting plate part of each magnet holder from the non-magnetic plate by cutting and bending provides a high accuracy magnet position in the alternator with low manufacturing cost.
摘要:
An automotive alternator includes a stator winding that is made of a metal other than copper and copper alloys. The alternator also includes a built-in rectifier that includes a plurality of rectifying elements and a plurality of electrical conductors. The rectifying elements and the electrical conductors together form a rectification circuit for rectifying AC power output from the stator winding into DC power. Further, at least one of the electrical conductors includes first and second portions. The first portion is connected to at least one of the rectifying elements, and made of copper or a copper alloy. The second portion is connected to the stator winding, and made of a metal containing a metallic element that is also contained in the metal of which the stator winding is made.
摘要:
An automotive alternator includes a stator winding that is made of a metal other than copper and copper alloys. The alternator also includes a built-in rectifier that includes a plurality of rectifying elements and a plurality of electrical conductors. The rectifying elements and the electrical conductors together form a rectification circuit for rectifying AC power output from the stator winding into DC power. Further, at least one of the electrical conductors includes first and second portions. The first portion is connected to at least one of the rectifying elements, and made of copper or a copper alloy. The second portion is connected to the stator winding, and made of a metal containing a metallic element that is also contained in the metal of which the stator winding is made.
摘要:
A vehicle A.C. generator has a rotor. The rotor has a pair of pole cores and magnet holders. Each pole core has a plurality of claw-like magnet poles. Each magnet holder contains a permanent magnet and placed between the adjacent claw-like magnet poles in order to prevent leakage flux. The rotor has a pair of supporting members in order to stop each magnet holder shifting in the direction of a rotary shaft of the rotor. Each supporting member has projecting parts which correspond to the magnet holders. The supporting members are fixed to one end surface of the pole cores, respectively. Each projecting part fixes the position of the corresponding permanent magnet in the rotor.
摘要:
A vehicle A.C. generator has a rotor. The rotor has a pair of pole cores and magnet holders. Each pole core has a plurality of claw-like magnet poles. Each magnet holder contains a permanent magnet and placed between the adjacent claw-like magnet poles in order to prevent leakage flux. The rotor has a pair of supporting members in order to stop each magnet holder shifting in the direction of a rotary shaft of the rotor. Each supporting member has projecting parts which correspond to the magnet holders. The supporting members are fixed to one end surface of the pole cores, respectively. Each projecting part fixes the position of the corresponding permanent magnet in the rotor.
摘要:
A vehicle alternator and a stator for the vehicle alternator are disclosed wherein a stator winding includes a plurality of base segments wound on slots of the stator, each of the base segments including a large segment and a small segment disposed in the same slots distanced from each other by one-pole pitch. The large and small segments have turning portions extending from one axial end of the stator to form coil ends, respectively, with the turning portions of the large and small segments being dislocated from each other in a circumferential direction of the stator core to provide a circumferential space to create a cooling wind flow path to pass cooling wind in a radial direction of the stator core.
摘要:
A vehicle alternator and a stator for the vehicle alternator are disclosed wherein a stator winding includes a plurality of base segments wound on slots of the stator, each of the base segments including a large segment and a small segment disposed in the same slots distanced from each other by one-pole pitch. The large and small segments have turning portions extending from one axial end of the stator to form coil ends, respectively, with the turning portions of the large and small segments being dislocated from each other in a circumferential direction of the stator core to provide a circumferential space to create a cooling wind flow path to pass cooling wind in a radial direction of the stator core.