摘要:
An extension of COSMO-SAC to electrolytes (eCOSMO-SAC) combines the COSMO-SAC term for short range molecule-molecule, molecule-ion and ion-ion interactions with the extended symmetric Pitzer-Debye-Hückel term for long range ion-ion interactions. The extension recognizes that like-ion repulsion and local electroneutrality govern the surface segment contacts, and introduces a dual sigma profile concept for electrolyte systems. The eCOSMO-SAC formulation predicts activity coefficients of several representative electrolyte systems.
摘要:
An extension of COSMO-SAC to electrolytes (eCOSMO-SAC) combines the COSMO-SAC term for short range molecule-molecule, molecule-ion and ion-ion interactions with the extended symmetric Pitzer-Debye-Hückel term for long range ion-ion interactions. The extension recognizes that like-ion repulsion and local electroneutrality govern the surface segment contacts, and introduces a dual sigma profile concept for electrolyte systems. The eCOSMO-SAC formulation predicts activity coefficients of several representative electrolyte systems.
摘要:
Included are methods for modeling at least one physical property of a mixture of at least two chemical species. One or more chemical species of the mixture are approximated or represented by at least one conceptual segment. The conceptual segments are then used to compute at least one physical property of the mixture. An analysis of the computed physical properties forms a model of at least one physical property of the mixture. Also included are computer program products and computer systems for implementing the modeling methods.
摘要:
In the present invention the NonRandom Two-Liquid segment activity coefficient model system of the parent application is extended for computation of ionic activity coefficients and solubilities of electrolytes, organic and inorganic, in common solvents and solvent mixtures. The invention method and system may be applied to the chemical and/or pharmaceutical design process. In addition to the three types of molecular parameters defined for organic nonelectrolytes, i.e., hydrophobicity X, polarity Y, and hydrophilicity Z, an electrolyte parameter, E, is introduced to characterize both local and long-range ion-ion and ion-molecule interactions attributed to ionized segments of electrolytes. Successful representations of mean ionic activity coefficients and solubilities of electrolytes, inorganic and organic, in aqueous and nonaqueous solvents are presented.
摘要:
In the present invention the NonRandom Two-Liquid segment activity coefficient model system of the parent application is extended for computation of ionic activity coefficients and solubilities of electrolytes, organic and inorganic, in common solvents and solvent mixtures. The invention method and system may be applied to the chemical and/or pharmaceutical design process. In addition to the three types of molecular parameters defined for organic nonelectrolytes, i.e., hydrophobicity X, polarity Y, and hydrophilicity Z, an electrolyte parameter, E, is introduced to characterize both local and long-range ion-ion and ion-molecule interactions attributed to ionized segments of electrolytes. Successful representations of mean ionic activity coefficients and solubilities of electrolytes, inorganic and organic, in aqueous and nonaqueous solvents are presented.
摘要:
In the present invention the NonRandom Two-Liquid segment activity coefficient model system of the parent application is extended for computation of ionic activity coefficients and solubilities of electrolytes, organic and inorganic, in common solvents and solvent mixtures. The invention method and system may be applied to the chemical and/or pharmaceutical design process. In addition to the three types of molecular parameters defined for organic nonelectrolytes, i.e., hydrophobicity X, polarity Y, and hydrophilicity Z, an electrolyte parameter, E, is introduced to characterize both local and long-range ion-ion and ion-molecule interactions attributed to ionized segments of electrolytes. Successful representations of mean ionic activity coefficients and solubilities of electrolytes, inorganic and organic, in aqueous and nonaqueous solvents are presented.
摘要:
Included are methods for modeling at least one physical property of a mixture of at least two chemical species. One or more chemical species of the mixture are approximated or represented by at least one conceptual segment. The conceptual segments are then used to compute at least one physical property of the mixture. An analysis of the computed physical properties forms a model of at least one physical property of the mixture. Also included are computer program products and computer systems for implementing the modeling methods.
摘要:
Included are methods for modeling at least one physical property of a mixture of at least two chemical species. One or more chemical species of the mixture are approximated or represented by at least one conceptual segment. The conceptual segments are then used to compute at least one physical property of the mixture. An analysis of the computed physical properties forms a model of at least one physical property of the mixture. Also included are computer program products and computer systems for implementing the modeling methods.
摘要:
Included are methods for modeling at least one physical property of a mixture of at least two chemical species. One or more chemical species of the mixture are approximated or represented by at least one conceptual segment. The conceptual segments are then used to compute at least one physical property of the mixture. An analysis of the computed physical properties forms a model of at least one physical property of the mixture. Also included are computer program products and computer systems for implementing the modeling methods.
摘要:
In the present invention the NonRandom Two-Liquid segment activity coefficient model system of the parent application is extended for computation of ionic activity coefficients and solubilities of electrolytes, organic and inorganic, in common solvents and solvent mixtures. The invention method and system may be applied to the chemical and/or pharmaceutical design process. In addition to the three types of molecular parameters defined for organic nonelectrolytes, i.e., hydrophobicity X, polarity Y, and hydrophilicity Z, an electrolyte parameter, E, is introduced to characterize both local and long-range ion-ion and ion-molecule interactions attributed to ionized segments of electrolytes. Successful representations of mean ionic activity coefficients and solubilities of electrolytes, inorganic and organic, in aqueous and nonaqueous solvents are presented.