摘要:
The amount of Pt residues remaining after forming Pt-containing NiSi is reduced by performing a rework including applying SPM at a temperature of 130° C. in a SWC tool, if Pt residue is detected. Embodiments include depositing a layer of Ni/Pt on a semiconductor substrate, annealing the deposited Ni/Pt layer, removing unreacted Ni from the annealed Ni/Pt layer, annealing the Ni removed Ni/Pt layer, removing unreacted Pt from the annealed Ni removed Ni/Pt layer, analyzing the Pt removed Ni/Pt layer for unreacted Pt residue, and if unreacted Pt residue is detected, applying SPM to the Pt removed Ni/Pt layer in a SWC tool. The SPM may be applied to the Pt removed Ni′/Pt layer at a temperature of 130° C.
摘要:
The amount of Pt residues remaining after forming Pt-containing NiSi is reduced by performing a rework including applying SPM at a temperature of 130° C. in a SWC tool, if Pt residue is detected. Embodiments include depositing a layer of Ni/Pt on a semiconductor substrate, annealing the deposited Ni/Pt layer, removing unreacted Ni from the annealed Ni/Pt layer, annealing the Ni removed Ni/Pt layer, removing unreacted Pt from the annealed Ni removed Ni/Pt layer, analyzing the Pt removed Ni/Pt layer for unreacted Pt residue, and if unreacted Pt residue is detected, applying SPM to the Pt removed Ni/Pt layer in a SWC tool. The SPM may be applied to the Pt removed Ni'/Pt layer at a temperature of 130° C.
摘要:
Ni and Pt residuals are eliminated by replacing an SPM cleaning process with application of HNO3 in an SWC tool. Embodiments include depositing a layer of Ni/Pt on a semiconductor substrate, annealing the deposited Ni/Pt layer, removing unreacted Ni from the annealed Ni/Pt layer by applying HNO3 to the annealed Ni/Pt layer in an SWC tool, annealing the Ni removed Ni/Pt layer, and removing unreacted Pt from the annealed Ni removed Ni/Pt layer. Embodiments include forming first and second gate electrodes on a substrate, spacers on opposite sides of each gate electrode, and Pt-containing NiSi on the substrate adjacent each spacer, etching back the spacers, forming a tensile strain layer over the first gate electrode, applying a first HNO3 in an SWC tool, forming a compressive strain layer over the second gate electrode, and applying a second HNO3 in an SWC tool.
摘要:
Ni and Pt residuals are eliminated by replacing an SPM cleaning process with application of HNO3 in an SWC tool. Embodiments include depositing a layer of Ni/Pt on a semiconductor substrate, annealing the deposited Ni/Pt layer, removing unreacted Ni from the annealed Ni/Pt layer by applying HNO3 to the annealed Ni/Pt layer in an SWC tool, annealing the Ni removed Ni/Pt layer, and removing unreacted Pt from the annealed Ni removed Ni/Pt layer. Embodiments include forming first and second gate electrodes on a substrate, spacers on opposite sides of each gate electrode, and Pt-containing NiSi on the substrate adjacent each spacer, etching back the spacers, forming a tensile strain layer over the first gate electrode, applying a first HNO3 in an SWC tool, forming a compressive strain layer over the second gate electrode, and applying a second HNO3 in an SWC tool.