AUTODECODING LATENT 3D DIFFUSION MODELS

    公开(公告)号:US20240420407A1

    公开(公告)日:2024-12-19

    申请号:US18211149

    申请日:2023-06-16

    Applicant: Snap Inc.

    Abstract: Systems and methods for generating static and articulated 3D assets are provided that include a 3D autodecoder at their core. The 3D autodecoder framework embeds properties learned from the target dataset in the latent space, which can then be decoded into a volumetric representation for rendering view-consistent appearance and geometry. The appropriate intermediate volumetric latent space is then identified and robust normalization and de-normalization operations are implemented to learn a 3D diffusion from 2D images or monocular videos of rigid or articulated objects. The methods are flexible enough to use either existing camera supervision or no camera information at all—instead efficiently learning the camera information during training. The generated results are shown to outperform state-of-the-art alternatives on various benchmark datasets and metrics, including multi-view image datasets of synthetic objects, real in-the-wild videos of moving people, and a large-scale, real video dataset of static objects.

Patent Agency Ranking