GENERATING GROUND TRUTH DATASETS FOR VIRTUAL REALITY EXPERIENCES

    公开(公告)号:US20250095282A1

    公开(公告)日:2025-03-20

    申请号:US18968137

    申请日:2024-12-04

    Applicant: Snap Inc.

    Abstract: Systems and methods of generating ground truth datasets for producing virtual reality (VR) experiences, for testing simulated sensor configurations, and for training machine-learning algorithms. In one example, a recording device with one or more cameras and one or more inertial measurement units captures images and motion data along a real path through a physical environment. A SLAM application uses the captured data to calculate the trajectory of the recording device. A polynomial interpolation module uses Chebyshev polynomials to generate a continuous time trajectory (CTT) function. The method includes identifying a virtual environment and assembling a simulated sensor configuration, such as a VR headset. Using the CTT function, the method includes generating a ground truth output dataset that represents the simulated sensor configuration in motion along a virtual path through the virtual environment. The virtual path is closely correlated with the motion along the real path as captured by the recording device. Accordingly, the output dataset produces a realistic and life-like VR experience. In addition, the methods described can be used to generate multiple output datasets, at various sample rates, which are useful for training the machine-learning algorithms which are part of many VR systems.

    GENERATING GROUND TRUTH DATASETS FOR VIRTUAL REALITY EXPERIENCES

    公开(公告)号:US20240135633A1

    公开(公告)日:2024-04-25

    申请号:US18400289

    申请日:2023-12-29

    Applicant: Snap Inc.

    Abstract: Systems and methods of generating ground truth datasets for producing virtual reality (VR) experiences, for testing simulated sensor configurations, and for training machine-learning algorithms. In one example, a recording device with one or more cameras and one or more inertial measurement units captures images and motion data along a real path through a physical environment. A SLAM application uses the captured data to calculate the trajectory of the recording device. A polynomial interpolation module uses Chebyshev polynomials to generate a continuous time trajectory (CTT) function. The method includes identifying a virtual environment and assembling a simulated sensor configuration, such as a VR headset. Using the CTT function, the method includes generating a ground truth output dataset that represents the simulated sensor configuration in motion along a virtual path through the virtual environment. The virtual path is closely correlated with the motion along the real path as captured by the recording device. Accordingly, the output dataset produces a realistic and life-like VR experience. In addition, the methods described can be used to generate multiple output datasets, at various sample rates, which are useful for training the machine-learning algorithms which are part of many VR systems.

    Generating ground truth datasets for virtual reality experiences

    公开(公告)号:US12190438B2

    公开(公告)日:2025-01-07

    申请号:US18400289

    申请日:2023-12-29

    Applicant: Snap Inc.

    Abstract: Systems and methods of generating ground truth datasets for producing virtual reality (VR) experiences, for testing simulated sensor configurations, and for training machine-learning algorithms. In one example, a recording device with one or more cameras and one or more inertial measurement units captures images and motion data along a real path through a physical environment. A SLAM application uses the captured data to calculate the trajectory of the recording device. A polynomial interpolation module uses Chebyshev polynomials to generate a continuous time trajectory (CTT) function. The method includes identifying a virtual environment and assembling a simulated sensor configuration, such as a VR headset. Using the CTT function, the method includes generating a ground truth output dataset that represents the simulated sensor configuration in motion along a virtual path through the virtual environment. The virtual path is closely correlated with the motion along the real path as captured by the recording device. Accordingly, the output dataset produces a realistic and life-like VR experience. In addition, the methods described can be used to generate multiple output datasets, at various sample rates, which are useful for training the machine-learning algorithms which are part of many VR systems.

    GENERATING GROUND TRUTH DATASETS FOR VIRTUAL REALITY EXPERIENCES

    公开(公告)号:US20220366639A1

    公开(公告)日:2022-11-17

    申请号:US17877451

    申请日:2022-07-29

    Applicant: Snap Inc.

    Abstract: Systems and methods of generating ground truth datasets for producing virtual reality (VR) experiences, for testing simulated sensor configurations, and for training machine-learning algorithms. In one example, a recording device with one or more cameras and one or more inertial measurement units captures images and motion data along a real path through a physical environment. A SLAM application uses the captured data to calculate the trajectory of the recording device. A polynomial interpolation module uses Chebyshev polynomials to generate a continuous time trajectory (CTT) function. The method includes identifying a virtual environment and assembling a simulated sensor configuration, such as a VR headset. Using the CTT function, the method includes generating a ground truth output dataset that represents the simulated sensor configuration in motion along a virtual path through the virtual environment. The virtual path is closely correlated with the motion along the real path as captured by the recording device. Accordingly, the output dataset produces a realistic and life-like VR experience. In addition, the methods described can be used to generate multiple output datasets, at various sample rates, which are useful for training the machine-learning algorithms which are part of many VR systems.

    Generating ground truth datasets for virtual reality experiences

    公开(公告)号:US11887246B2

    公开(公告)日:2024-01-30

    申请号:US17877451

    申请日:2022-07-29

    Applicant: Snap Inc.

    Abstract: Systems and methods of generating ground truth datasets for producing virtual reality (VR) experiences, for testing simulated sensor configurations, and for training machine-learning algorithms. In one example, a recording device with one or more cameras and one or more inertial measurement units captures images and motion data along a real path through a physical environment. A SLAM application uses the captured data to calculate the trajectory of the recording device. A polynomial interpolation module uses Chebyshev polynomials to generate a continuous time trajectory (CTT) function. The method includes identifying a virtual environment and assembling a simulated sensor configuration, such as a VR headset. Using the CTT function, the method includes generating a ground truth output dataset that represents the simulated sensor configuration in motion along a virtual path through the virtual environment. The virtual path is closely correlated with the motion along the real path as captured by the recording device. Accordingly, the output dataset produces a realistic and life-like VR experience. In addition, the methods described can be used to generate multiple output datasets, at various sample rates, which are useful for training the machine-learning algorithms which are part of many VR systems.

    Generating ground truth datasets for virtual reality experiences

    公开(公告)号:US11417052B2

    公开(公告)日:2022-08-16

    申请号:US17342851

    申请日:2021-06-09

    Applicant: Snap Inc.

    Abstract: Systems and methods of generating ground truth datasets for producing virtual reality (VR) experiences, for testing simulated sensor configurations, and for training machine-learning algorithms. In one example, a recording device with one or more cameras and one or more inertial measurement units captures images and motion data along a real path through a physical environment. A SLAM application uses the captured data to calculate the trajectory of the recording device. A polynomial interpolation module uses Chebyshev polynomials to generate a continuous time trajectory (CTT) function. The method includes identifying a virtual environment and assembling a simulated sensor configuration, such as a VR headset. Using the CTT function, the method includes generating a ground truth output dataset that represents the simulated sensor configuration in motion along a virtual path through the virtual environment. The virtual path is closely correlated with the motion along the real path as captured by the recording device. Accordingly, the output dataset produces a realistic and life-like VR experience. In addition, the methods described can be used to generate multiple output datasets, at various sample rates, which are useful for training the machine-learning algorithms which are part of many VR systems.

Patent Agency Ranking