Abstract:
Flexible interconnects for attaching overlapping strings that can be part of a photovoltaic module. The interconnects can absorb strain caused by non-uniform heating and other loads encountered by the photovoltaic module.
Abstract:
A photovoltaic array mounting system for a low-slope roof having interchangeable first and second bases, with a short leg extending from the first base at a non-vertical angle and a long leg extending from the second base at a non-vertical angle, wherein the short and long legs support opposite sides of a photovoltaic module such that the module is held at a non-horizontal angle, and wherein rock-in connectors are provided on top of the short and long legs permitting fast and easy system installation.
Abstract:
A solar array with successive rows of photovoltaic modules angled in opposing directions forming peaks and valleys between the rows with the valleys (i.e.: lower sides of the photovoltaic module rows) being mounted close together and the peaks (i.e.: upper sides of the photovoltaic module rows) being mounted far apart to improve system aerodynamics and permit ease of access for installers. Included is a system for connecting the upper sides of the photovoltaic modules to connectors that slide on bars extending between upper and lower mounting bases and for pivot locking the lower sides of the photovoltaic modules to the lower mounting bases.
Abstract:
An interlocking system for connecting photovoltaic module frames to a torque tube, including: (a) an interlock dimensioned to be positioned between the sides of two adjacent photovoltaic module frames; (b) a pair of couplings or flanges, wherein the couplings or flanges connect the interlock to both of the adjacent photovoltaic module frames; and (c) a U-lock connected to the interlock, wherein the U-lock is dimensioned to be connected to a torque tube.
Abstract:
A circuit breaker system is provided that receives combined power inputs from a utility and from an alternative energy source for backfeeding to the utility through a standard breaker box without overloading the bus bars of the breaker box.
Abstract:
An attachment point apparatus and system for photovoltaic arrays is disclosed. One embodiment provides a rail system for receiving a PV module, including a first rail, a second rail, a substantially rectilinear double male connector adapted for coupling an end of the first rail to an end of the second rail, and a connector adapted to attach a PV module to the first rail. Another embodiment provides a PV module including a PV laminate, a frame integral with and supporting the PV laminate, and a spanner bar adapted to solely span a width of the PV module, orthogonally connect at various locations along the frame, and attach to a support structure. A further embodiment provides a coupling device for a PV module comprising a first coupling portion adapted to rotatably engage a PV module, and a second coupling portion adapted to rotatably engage a rail.
Abstract:
Photovoltaic modules are constructed having separate positive and negative junction boxes positioned at the corners of each photovoltaic module. A photovoltaic array assembled from these photovoltaic modules can be aligned such that the positive and negative junction boxes connect in an arrangement that minimizes the amount of wire needed to install the photovoltaic array. The arrangement of photovoltaic modules connecting the positive and negative junction boxes on adjacent photovoltaic modules leads to successive rows of photovoltaic modules in the photovoltaic array are oriented in opposing directions.
Abstract:
An attachment point apparatus and system for photovoltaic arrays is disclosed. One embodiment provides a rail system for receiving a PV module, including a first rail, a second rail, a substantially rectilinear double male connector adapted for coupling an end of the first rail to an end of the second rail, and a connector adapted to attach a PV module to the first rail. Another embodiment provides a PV module including a PV laminate, a frame integral with and supporting the PV laminate, and a spanner bar adapted to solely span a width of the PV module, orthogonally connect at various locations along the frame, and attach to a support structure. A further embodiment provides a coupling device for a PV module comprising a first coupling portion adapted to rotatably engage a PV module, and a second coupling portion adapted to rotatably engage a rail.
Abstract:
Photovoltaic modules are constructed having separate positive and negative junction boxes positioned at the corners of each photovoltaic module. A photovoltaic array assembled from these photovoltaic modules can be aligned such that the positive and negative junction boxes connect in an arrangement that minimizes the amount of wire needed to install the photovoltaic array. The arrangement of photovoltaic modules connecting the positive and negative junction boxes on adjacent photovoltaic modules leads to successive rows of photovoltaic modules in the photovoltaic array are oriented in opposing directions.