Abstract:
The present disclosure is drawn to a disinfectant system which can be used to disinfect surfaces. The system includes a first chamber containing a first solution and a second chamber containing a second solution. The first solution can include an alcohol, an organic carboxylic acid, and from 0.01 ppm, to 1,000 ppm by weight of a transition metal or alloy thereof based on the first solution weight content. The second solution can include hydrogen peroxide. The system further includes a dispenser through which the system is configured to mix and dispense the first solution and the second solution immediately before being dispensed. A peracid composition is formed upon mixing of the first and second solutions.
Abstract:
Systems and methods for disinfecting medical instruments are provided. In one embodiment, a system can include a hood to provide a clean zone, a chamber to dispose within the clean zone, and an ultrasonicator. More specifically, the chamber can include a volume and can be configured to retain a fluid and receive medical instruments. The chamber can also include a portal through which fluids enter or leave the chamber. The ultrasonicator can be used to sonicate the volume when the fluid is present. A related method of disinfecting medical instruments can be accomplished using the systems of the present disclosure.
Abstract:
The present disclosure is drawn to a multi-chamber container for storing and mixing fluids. The container can include a first chamber configured to contain a first liquid composition as well as a second chamber configured to contain a second liquid composition. A barrier can be operable to retain the first liquid composition within the first chamber. The multi-chamber container can further include a dispenser including a nozzle and an extraction tube for extracting fluid from the second chamber as well as a guide channel associated with the first chamber. The guide channel can be configured to guide the extraction tube into the second chamber such that the dispenser contacts the barrier in order to facilitate removal or reconfiguration of the barrier. Thus, the first liquid composition is allowed to contact the second liquid composition.
Abstract:
The present disclosure is drawn to a multi-component container system and related methods for storing and mixing liquids and associated methods of use. The system includes a first chamber configured to hold a first liquid and which has at least one opening and a second chamber and a second chamber configured to hold a second liquid and having at least one opening. The at least one opening on the second chamber is capable of being operably connected to the at least one opening of the first chamber and the second chamber can be smaller relative to the first chamber. The system can have two configurations, a first configuration and a second configuration. In the first configuration the second chamber can be removably disposed within the first chamber. In the second configuration the second chamber can be external to the first chamber and the at least one opening of the second chamber is operably connected with the at least one opening of the first chamber such that the second liquid is allowed to contact the first liquid.
Abstract:
The present disclosure is drawn to a multi-chamber container and related methods for storing and mixing liquids and associated methods of use. The multi-chamber container includes a first chamber configured to contain a first liquid composition. The multi-chamber container also includes a second chamber configured to contain a second liquid composition. The multi-chamber container further includes a barrier operable to separate the first chamber and the second chamber. Additionally, the multi-chamber container includes a compliant mechanism movable between a first position and a second position and a plunger movable with the compliant mechanism to alter or remove the barrier. In the first position, the barrier is operable to maintain the first liquid composition and the second liquid composition separate from one another. In the second position, the plunger is operable to alter or remove the barrier to facilitate contact of the first liquid composition and the second liquid composition.
Abstract:
The present disclosure is drawn to a disinfectant system which can be used to disinfect surfaces. The system includes a first chamber containing a first solution and a second chamber containing a second solution. The first solution can include an alcohol, an organic carboxylic acid, and from 0.01 ppm, to 1,000 ppm by weight of a transition metal or alloy thereof based on the first solution weight content. The second solution can include hydrogen peroxide. The system further includes a dispenser through which the system is configured to mix and dispense the first solution and the second solution immediately before being dispensed. A peracid composition is formed upon mixing of the first and second solutions.
Abstract:
The present disclosure is drawn to a disinfectant system which can be used to disinfect surfaces. The system includes a first chamber containing a first solution and a second chamber containing a second solution. The first solution can include an alcohol, an organic carboxylic acid, and from 0.01 ppm, to 1,000 ppm by weight of a transition metal or alloy thereof based on the first solution weight content. The second solution can include hydrogen peroxide. The system further includes a dispenser through which the system is configured to mix and dispense the first solution and the second solution immediately before being dispensed. A peracid composition is formed upon mixing of the first and second solutions.
Abstract:
The present invention is drawn to compositions, systems, and methods of disinfecting surfaces without the undesired staining often associated with silver composition. In one example, the composition includes water, a peroxygen, a silver component, and an alkyl or aryl salicylate.
Abstract:
The present invention is drawn to compositions, systems, and methods of disinfecting surfaces without the undesired staining often associated with silver composition. In one example, the composition includes water, a silver component including silver ions, a fluorescing compound that that emits absorbed light in the range of 300 nm to 450 nm, and a silver ion fixing agent adapted to chelate or reduce the silver ions.