Transformation of directed acyclic graph query plans to linear query plans
    2.
    发明授权
    Transformation of directed acyclic graph query plans to linear query plans 有权
    将有向非循环图查询计划转换为线性查询计划

    公开(公告)号:US08260768B2

    公开(公告)日:2012-09-04

    申请号:US12697093

    申请日:2010-01-29

    IPC分类号: G06F17/30 G06F7/00

    CPC分类号: G06F17/30

    摘要: Methods, computer-readable storage media and computer systems are provided for transforming a directed acyclic graph (“DAG”) query plan into a linear plan. A DAG query plan may include a first operator and a second operator that are scheduled to be executed in parallel. The DAG query plan may be modified so that the first and second operators are executed in series as an upstream operator and a downstream operator. A data unit output from the upstream operator may be marked to indicate that the data unit has been processed by the upstream operator. The data unit received as input at the downstream operator may be inspected to determine whether the data unit has been marked. Once in linear form, the query plan may be optimized to conserve computing resources.

    摘要翻译: 提供了一种方法,计算机可读存储介质和计算机系统,用于将有向非循环图(“DAG”)查询计划转换为线性计划。 DAG查询计划可以包括被调度为并行执行的第一运算符和第二运算符。 可以修改DAG查询计划,使得第一和第二运算符作为上游运算符和下游运算符串联执行。 可以标记来自上游运营商的数据单元输出,以指示数据单元已被上游运营商处理。 可以检查在下游操作者处接收作为输入的数据单元以确定数据单元是否已被标记。 一旦成为线性形式,查询计划可以被优化以节省计算资源。

    Data Stream Processing
    3.
    发明申请
    Data Stream Processing 有权
    数据流处理

    公开(公告)号:US20100262613A1

    公开(公告)日:2010-10-14

    申请号:US12422875

    申请日:2009-04-13

    IPC分类号: G06F17/30

    摘要: A method of processing a stream of raw data from a plurality of distributed data producing devices includes reducing the raw data to a plurality of representative synopsis coefficients, organizing the synopsis coefficients into a data structure with at least three dimensions, including a time window dimension and an accuracy dimension. Responsive to a detected anomaly in the data structure, at least one of a predetermined autonomous action and an action directed by a user is performed.

    摘要翻译: 一种从多个分布式数据产生装置处理原始数据流的方法包括将原始数据减少为多个代表性概要系数,将概要系数组织成具有至少三维的数据结构,包括时间窗口尺寸和 精度维度。 响应于数据结构中检测到的异常,执行预定的自主动作和由用户指导的动作中的至少一个。

    DATA CLASSIFICATION METHOD FOR UNKNOWN CLASSES
    4.
    发明申请
    DATA CLASSIFICATION METHOD FOR UNKNOWN CLASSES 审中-公开
    未知类别的数据分类方法

    公开(公告)号:US20100198758A1

    公开(公告)日:2010-08-05

    申请号:US12364442

    申请日:2009-02-02

    IPC分类号: G06F15/18

    CPC分类号: G06N20/00

    摘要: A system and method for creating a CD Tree for data having unknown classes are provided. Such a method can include dividing training data into a plurality of subsets of node training data at a plurality of nodes arranged in a hierarchical arrangement, wherein the node training data has a range. Furthermore, dividing node training data at each node can include, ordering the node training data, generating a plurality of separation points and a plurality of pairs of bins from the node training data, wherein each pair of bins includes a first bin and a second bin with a separation point being located between the first bin and the second bin, and classifying the node training data into either the first bin or the second bin for each of the separation points, wherein the classifying is based on a data classifier. Validation data can be utilized to calculate the bin accuracy between the node training data bin pairs and the validation data bin pairs for each separation point, and the separation point having a high bin accuracy can be selected as the node separation point.

    摘要翻译: 提供了一种用于为具有未知类的数据创建CD树的系统和方法。 这种方法可以包括将训练数据划分为以分层布置排列的多个节点的节点训练数据的多个子集,其中节点训练数据具有范围。 此外,在每个节点处划分节点训练数据可以包括:从节点训练数据生成节点训练数据,生成多个分离点和多对分组,其中每对分组包括第一分组和第二分组 其中分离点位于第一仓和第二仓之间,并且将节点训练数据分类为用于每个分离点的第一仓或第二仓,其中分类基于数据分类器。 可以使用验证数据来计算节点训练数据箱对与每个分离点的验证数据箱对之间的仓精度,并且可以选择具有高仓精度的分离点作为节点分离点。

    Nested complex sequence pattern queries over event streams
    5.
    发明授权
    Nested complex sequence pattern queries over event streams 有权
    嵌套复杂序列模式查询事件流

    公开(公告)号:US09298773B2

    公开(公告)日:2016-03-29

    申请号:US13431773

    申请日:2012-03-27

    IPC分类号: G06F17/30

    CPC分类号: G06F17/30477 G06F17/30864

    摘要: A method of evaluating nested complex sequence pattern queries includes obtaining events from an event stream and evaluating the events within a first window using an outer query to produce outer partial results. The method also includes determining a more stringent window constraint, the more stringent window constraint comprising a subset of the window constraint corresponding to events that produces the outer partial results and passing the more stringent window constraint to an inner query nested within the outer query. A complex event processing system is also provided.

    摘要翻译: 评估嵌套复杂序列模式查询的方法包括从事件流获取事件并且使用外部查询来评估第一窗口内的事件以产生外部部分结果。 该方法还包括确定更严格的窗口约束,更严格的窗口约束包括对应于产生外部部分结果的事件的窗口约束的子集,并将更严格的窗口约束传递给嵌套在外部查询内的内部查询。 还提供了一个复杂的事件处理系统。

    IDENTIFYING CORRELATED OPERATION MANAGEMENT EVENTS
    8.
    发明申请
    IDENTIFYING CORRELATED OPERATION MANAGEMENT EVENTS 审中-公开
    识别相关操作管理事件

    公开(公告)号:US20120078903A1

    公开(公告)日:2012-03-29

    申请号:US12888800

    申请日:2010-09-23

    IPC分类号: G06F17/30

    CPC分类号: G06F11/079 G06F11/0724

    摘要: A technique includes receiving data indicative of operation management events, where each event occurs at an associated time. The technique includes processing the data to selectively group the events in episodes based on the associated times and identifying which events are correlated based at least in part on the episodes.

    摘要翻译: 一种技术包括接收指示操作管理事件的数据,其中每个事件在相关时间发生。 该技术包括处理数据以基于相关联的时间选择性地分组情节中的事件,并且至少部分地基于事件识别哪些事件相关。

    Outlier data point detection
    9.
    发明申请
    Outlier data point detection 有权
    异常数据点检测

    公开(公告)号:US20110113009A1

    公开(公告)日:2011-05-12

    申请号:US12614432

    申请日:2009-11-08

    IPC分类号: G06F17/30 G06T11/20

    CPC分类号: G06F17/30516

    摘要: New data points are added to a streaming window of data points and existing data points are removed from the window over time. Each data point has a value for each of one or more dimensions. Each time a given new data point is added to the window or a given existing data point is removed from the window, one or more outlier detection data structures are updated. Each outlier detection data structure encompasses the data points within the streaming window for a corresponding dimension. The outlier detection data structures are used to detect outlier data points within the window over selected one or more dimensions.

    摘要翻译: 新的数据点被添加到数据点的流窗口中,并且现有的数据点随着时间从窗口中移除。 每个数据点具有一个或多个维度中的每一个的值。 每当将给定的新数据点添加到窗口或者从窗口中移除给定的现有数据点时,将更新一个或多个异常值检测数据结构。 每个异常值检测数据结构包含用于相应维度的流窗口内的数据点。 异常值检测数据结构用于在所选择的一个或多个维度上检测窗口内的异常值数据点。