Abstract:
An AC/DC converting circuit, has a full-bridge rectifier having two input terminals and two output terminals, a first capacitor, a second capacitor, an electronic switch having a control terminal, a trigger circuit having an input terminal and an output terminal, and a detecting circuit having an input terminal and an output terminal. The first capacitor and the second capacitor are serially connected between the output terminals of the full-bridge rectifier, the input terminals of the full-bridge rectifier are connected to an AC input, one end of the electronic switch is connected between the first capacitor and the second capacitor, the other end of the electronic switch is connected to one of the output terminals of the full-bridge rectifier, the input terminal and the output terminal of the detecting circuit are connected to the output terminals of the full-bridge rectifier, the output terminal of the detecting circuit is connected to an input terminal of the trigger circuit, and the output terminal of the trigger circuit is connected to the control terminal of the electronic switch.
Abstract:
A motor, including: a body, including a housing, a stator, and a rotor; and a controller, including a control box, and a control board. The body is disposed at the top of the motor. The controller is disposed at the bottom of the motor. The control board is disposed in the control box. A debug window is disposed on side wall or at the bottom of the control box. A sealing cover is disposed on the debug window. The sealing cover can be opened. The control board can be exposed for wire connection, adjustment of parameters of electronic components, and fixation of a rotating shaft according to requirements of users for installation and use.
Abstract:
A motor with a body, including: a housing, a stator, and a rotor; and a controller, including a control box, and a control circuit board. The body is disposed at the top of the motor. The controller is disposed at the bottom of the motor. The control circuit board is disposed in the control box. The control box extends from a side of the housing and forms a platform. A control cable and a power line enter the control box via the platform, and are connected to the control circuit board. The control cable and the power line are sealed via a sealing screw joint and a nut.
Abstract:
A motor, including a body, including a housing, a stator, and a rotor, and a controller, including a control box, and a control circuit board. The body is disposed at the top of the motor. The controller is disposed at the bottom of the motor. The control circuit board is disposed in the control box. A rotary dip switch is disposed at the bottom of the control box. The control circuit board includes a power board, and a control board. The rotary dip switch is electrically connected to the control board. The rotary dip switch controls different functions of the motor.
Abstract:
A structure for heat dissipation of motors including a heat dissipation component. A plurality of bosses for heat dissipation is arranged at intervals on the bottom of the heat dissipation component and an airflow passage is formed at the periphery of each boss. The heat dissipation component is a motor controller or an end cover. The structure for heat dissipation of motors is simple and reasonable. It features fast dissipation speed and excellent dissipation effects. It uses fewer materials, and is low in cost.
Abstract:
A brushless DC motor including a motor casing, a stator component, and a rotor component. The stator component and the rotor component are respectively arranged inside the motor casing. The rotor component includes a rotor iron core and a rotating shaft supporting the rotor iron core. A shaft extension end of the rotating shaft is arranged with a magnetic ring. One end of the motor casing is provided with an end cover. The center of the outer end surface of the end cover is provided with a groove. The magnetic ring is arranged inside the groove. A Hall induction device is arranged outside the groove and close to the magnetic ring. The motor is reasonably structured, compact, cost-effective, installation friendly, and highly reliable.
Abstract:
Taught herein is a controller for a DC brushless motor comprising a control board (3) and a housing (4); wherein the control board (3) is disposed in the housing (4), and the housing (4) is made of metal materials with good thermal conductivity; a plurality of heat sinks (5) are disposed at the bottom of the housing (4), thereby heat generated by the control board (3) will be dissipated fast, and the operating temperature and failure rates are reduced; an integrated power module chip (7) disposed at the bottom of the control board (3) transfers heat to the housing (4) via an insulating heat sink (8), and in doing so prevents electric leakage; the purpose of a plurality of gaps (9) disposed at the top of the housing (4) is to provide ventilation, and to dissipate heat fast; all of these design characteristics make the invention simple in structure, and convenient for mass assembly.
Abstract:
A motor including a housing, a stator assembly, a rotor assembly, a controller, and a top end cover. The housing includes a cavity. The stator assembly includes a stator core and a stator winding and is housed in the cavity. The top end cover is disposed on the top of the housing. The rotor assembly includes a permanent magnet, a revolving shaft, and a rotor support. A bearing support extends inward from the center of a top end face of the top end cover, with a bearing chamber respectively provided on both ends thereof. The revolving shaft is disposed into and supports the bearing. A connection kit extends from the edge of the rotor support and outside the bearing support. The permanent magnet is disposed on the connection kit. The motor is characterized by simple and compact structure, lower cost, easy thermal dissipation, smaller axial dimension, and convenient assembly.
Abstract:
A brushless DC motor structure including a motor body, a controller, and a fan radiator. The fan radiator is mounted between the motor body and the controller to disperse heat from the motor body and the controller. The brushless DC motor structure increases air flow on the surface of the motor body and the controller by the fan radiator and speeds up heat dispersion, and meanwhile effectively controls the operating temperature of the motor body and the controller. Thus, the brushless DC motor structure has an excellent heat dispersion capability, and the failure rate thereof has been largely reduced.
Abstract:
A heat-dissipation structure for a motor including a motor shell, a control box, and a coupling shell. One end of the coupling shell is connected to the bottom of the motor shell and the other end thereof is connected to the top of the control box and a plurality of air vents are arranged on a side wall of the coupling shell. The introduction of the coupling shell enlarges the inner space of the control box and achieves rapid heat dissipation and a better heat dissipation effect. The heat-dissipation structure features rapid heat dissipation, excellent heat dissipation effect, a simple structure, an attractive shape, and great universality.