Abstract:
A system and method of preparing images captured by a lifelog camera for efficient transfer from the camera to another device. The lifelog camera generates a corresponding thumbnail for each image that it captures, and an automated analysis engine analyzes the thumbnails for interestingness and, in some cases, for similarity.
Abstract:
Methods of providing communications between a wearable first wireless electronic device and a second wireless electronic device are provided. The methods include establishing a Body Area Network (BAN) link, through a human body of a user that is wearing the wearable first wireless electronic device, between the wearable first wireless electronic device and the second wireless electronic device, when the user touches a conductive button on the second wireless electronic device. Related wireless electronic devices and wearable wireless electronic devices are also provided.
Abstract:
A system and method of preparing images captured by a lifelog camera for efficient transfer from the camera to another device. The lifelog camera generates a corresponding thumbnail for each image that it captures, and an automated analysis engine analyzes the thumbnails for interestingness and, in some cases, for similarity.
Abstract:
Methods of providing communications between a wearable first wireless electronic device and a second wireless electronic device are provided. The methods include establishing a Body Area Network (BAN) link, through a human body of a user that is wearing the wearable first wireless electronic device, between the wearable first wireless electronic device and the second wireless electronic device, when the user touches a conductive button on the second wireless electronic device. Related wireless electronic devices and wearable wireless electronic devices are also provided.
Abstract:
A device and method in accordance with the present disclosure provide alternate inputs to an electronic device having at least one of an optical sensor or a proximity sensor. An object is placed relative to at least one of the at least one proximity sensor or optical sensor, and the object is detected as an input to the electronic device based on an amount of light detected by the optical sensor or a proximity of the object relative to the electronic device as determined by the proximity sensor. The detected input is equated to a predetermined function of the electronic device.