Abstract:
Disclosed herein is a method and corresponding system for TTI bundling based on communication type. The method may involve receiving an indication of a wireless communication, where the wireless communication may be of a particular quality of service and a particular type. The method may further involve responsive to receiving the indication, (i) determining the particular type of the wireless communication and (ii) determining, based at least in part on the determined particular type of the wireless communication, TTI bundling with a bundling size, N, should be invoked for transmitting data of the wireless communication, where N>1. And the method may involve responsive to determining that TTI bundling with the bundling size N should be invoked for transmitting data of the wireless communication, invoking TTI bundling with the bundling size N for transmitting the data of the wireless communication.
Abstract:
A method and system for controlling uplink air-interface communication over an air interface from a given user equipment device (UE) to the access node, where the uplink air-interface communication normally operates with a modulation order corresponding with a most recently determined channel quality of the given UE. An example method includes (i) detecting at least a threshold high rate of uplink voice muting on the air interface, and (ii) responsive to at least the detecting of the threshold high rate of uplink voice muting on the air interface, suppressing the modulation order used for the uplink air-interface communication from the given UE to the access node over the air interface.
Abstract:
In a long term evolution (LTE) network, coordinated multipoint (CoMP) and transmission time interval (TTI) bundling can both help to improve uplink communications, but both can also place a burden on network resource. Further, since both utilize redundancy to improve uplink communications, albeit in different ways, use of CoMP and TTI bundling may be considered unnecessary. Accordingly, example methods and systems are provided that may help to balance the application of TTI bundling and CoMP.
Abstract:
A wireless network receives one or more data segments transmitted by a wireless communication device (WCD) in or more transmission time intervals (TTIs), estimates a size of a next data segment to be transmitted by the WCD based at least in part on sizes of the one or more data segments transmitted by the WCD, and allocates a quantity of uplink resources (e.g., a number of physical resource blocks) to the WCD for use in one or more subsequent TTIs (e.g., TTIs used for TTI bundling) based at least in part on the estimated size of the next data segment. The network may refer to an algorithm, such as a Transmission Control Protocol (TCP) congestion control algorithm, that specifies how sizes of successive data segments increase over time to predict the size of the next data segment based on the sizes of the one or more data segments.
Abstract:
Coordinated multipoint (CoMP) may involve coordination between multiple sectors to receive and/or process a given user equipment's uplink signal. Embodiments herein may help to intelligently select the particular sectors that should coordinate to provide uplink CoMP, based on the types of applications being served in sectors that are candidates to provide uplink CoMP. For example, a base station serving a primary sector in an CoMP group that includes two or more candidates from which to select a secondary sector sectors for uplink CoMP, may evaluate the application being served by traffic flows in these candidates, in an effort to select secondary sectors having lower-priority traffic flows.