摘要:
A microfuel cell includes a substrate and a plurality of spaced-apart PEM dividers extending outwardly to define anodic and cathodic microfluidic channels. An anodic catalyst/electrode lines at least a portion of the anodic microfluidic channels, and a cathodic catalyst/electrode lines at least a portion of the cathodic microfluidic channels. Each anodic and cathodic catalyst/electrode may extend beneath an adjacent portion of a PEM divider in some embodiments. Alternately, the microfuel cell may include a plurality of stacked substrates, in which a first substrate has first microfluidic fuel cell reactant channels. A PEM layer may be adjacent the first surface of the first substrate, an anodic catalyst/electrode layer may be adjacent one side of the PEM layer, and a cathodic catalyst/electrode layer may be adjacent an opposite side of the PEM layer. An adhesive layer may secure the first substrate to an adjacent substrate defining at least a second microfluidic fuel cell reactant channel.
摘要:
An integrated heater formed as a field effect transistor in a semiconductor substrate, with the transistor having source and drain regions with a channel region extending therebetween to conduct current. The channel region has a resistance when conducting current to generate heat above a selected threshold. A dielectric layer is disposed on the channel region and a gate electrode is disposed on the dielectric layer to control the current of the channel region. A thermally insulating barrier is formed in the semiconductor material and may extend about the transistor. The object to be heated is positioned to receive the heat generated by the resistance of the channel region; the object may be a fluid chamber.
摘要:
An integrated heater formed as a field effect transistor in a semiconductor substrate, with the transistor having source and drain regions with a channel region extending therebetween to conduct current. The channel region has a resistance when conducting current to generate heat above a selected threshold. A dielectric layer is disposed on the channel region and a gate electrode is disposed on the dielectric layer to control the current of the channel region. A thermally insulating barrier is formed in the semiconductor material and may extend about the transistor. The object to be heated is positioned to receive the heat generated by the resistance of the channel region; the object may be a fluid chamber.