摘要:
A method and an apparatus for making an optical fiber preform comprising the steps of (i) depositing a plurality of rods are deposited into an inner cavity of an apparatus; (ii) depositing particulate glass material in the inner cavity between the rods and the inner wall; and (iii) applying pressure against the particulate glass material to pressurize the particulate glass material against the plurality of rods.
摘要:
A method and an apparatus for making an optical fiber preform comprising the steps of (i) depositing a plurality of rods are deposited into an inner cavity of an apparatus; (ii) depositing particulate glass material in the inner cavity between the rods and the inner wall; and (iii) applying pressure against the particulate glass material to pressurize the particulate glass material against the plurality of rods.
摘要:
A method of forming a cladding portion of an optical fiber preform assembly includes positioning a glass core cane in a mold cavity and loading the mold cavity with silica glass soot. The silica glass soot is compressed in an axial direction as the vibratory energy is applied to the mold body to form a soot compact around the glass core cane, wherein the soot compact is the cladding portion of an optical fiber preform assembly and the glass core cane is a core portion of the optical fiber preform assembly.
摘要:
A method of forming a cladding portion of an optical fiber preform assembly includes positioning a glass core cane in a mold cavity and loading the mold cavity with silica glass soot. The silica glass soot is compressed in an axial direction as the vibratory energy is applied to the mold body to form a soot compact around the glass core cane, wherein the soot compact is the cladding portion of an optical fiber preform assembly and the glass core cane is a core portion of the optical fiber preform assembly.
摘要:
The disclosure relates to methods of forming a vessel and to the resulting vessel. The vessel may be formed by providing a first fumed silica soot layer comprised of primary particles of fumed silica soot, and then providing over the first fumed silica soot layer a second fumed silica soot layer comprised of agglomerated particles formed into an agglomerated form from primary particles of fumed silica soot. The primary particles of the first fumed silica soot layer may have a substantially uniform density distribution, and the agglomerated particles of the second fumed silica soot layer may have a substantially non-uniform density distribution. The methods may include consolidating the first and second soot layers together to form a consolidated body.