摘要:
A method and apparatus is provided for compensating for dispersion in a wavelength division multiplexed (WDM) optical communication system. The system includes a transmitting and receiving terminal for transmitting and receiving, respectively, an optical signal having a plurality of channels, and an optical fiber transmission path coupling the first and second terminals. The fiber transmission path has a dispersion substantially equal to zero for a selected channel, positive dispersion for a first set of channels, and negative dispersion for a second set of channels. The method begins by providing positive dispersion compensation to the second set of channels at one of the terminals. Negative dispersion compensation is provided to the first set of channels, also at one of the terminals.
摘要:
Collisions between solitons in different frequency channels are one of the major sources of errors in transmission systems that utilize wavelength division multiplexing (WDM). Moreover, because standard transmission lines have lumped amplification, the four-wave mixing fields from soliton collisions grow uncontrollably, adding amplitude and timing jitter to the jitter due to ideal soliton collisions. These problems are addressed by using a specific dispersion map to implement dispersion management, by which it is possible to significantly reduce the collision-induced timing jitter and to improve system performance even in comparison with that provided by an ideal, exponentially decreasing dispersion fiber.
摘要:
Collisions between solitons in different frequency channels are one of the major sources of errors in transmission systems that utilize wavelength division multiplexing (WDM). Moreover, because standard transmission lines have lumped amplification, the four-wave mixing fields from soliton collisions grow uncontrollably, adding amplitude and timing jitter to the jitter due to ideal soliton collisions. These problems are addressed by using a specific dispersion map to implement dispersion management, by which it is possible to significantly reduce the collision-induced timing jitter and to improve system performance even in comparison with that provided by an ideal, exponentially decreasing dispersion fiber.
摘要:
Dispersion may be managed in an optical network configured to transmit differential phase shift keying (DPSK) modulated signals by allowing accumulation of dispersion to thousands of ps/nm before compensating. A dispersion map providing a negative average dispersion and a minimum dispersion wavelength outside of the signal band may be employed.
摘要:
A method and apparatus is provided for monitoring an optical transmission path through an optical transmission system supporting bidirectional communication between first and second terminals along first and second optical transmission paths. The first transmission path includes at least one optical amplifier located therein. In accordance with the method, a test signal is generated, which is formed by a superposition of first and second optical tones located at first and second wavelengths, respectively. The first and second wavelengths are within the bandwidth of the optical amplifier. The amplitude and phase of the first and second optical tones are arranged so that the test signal has a substantially constant intensity over a modulation cycle of the first and second optical tones. The test signal is transmitted from the first terminal along the first optical transmission path and through the optical amplifier. A portion of the test signal is received at the first terminal after it traverses the optical amplifier, an optical loop-back path, and a second transmission path. The received portion of the test signal may be compared to a delayed rendition of the generated test signal to assess transmission path performance.
摘要:
A method is provided for determining the system performance of an optical transmission system that supports an optical signal having a plurality of channels. The method begins by selecting a set of parameters defining characteristics of the transmission system. Exemplary parameters include, for example, the system's length, bit rate, the number of amplifiers and channels employed, and the wavelengths of the channels and their respective power levels. The method continues by determining a baseline value of the system performance that accounts for fiber loss, optical amplifier gain and noise, and system gain equalization. Next, a first penalty to the baseline system performance is determined. The first penalty arises from a nonlinear interaction between the optical signal and amplified spontaneous emission. A second penalty to the baseline system performance is then determined. The second penalty arises from self-phase modulation and cross-phase modulation. Finally, the first and second penalties are subtracted from the baseline system performance to obtain a value of system performance for the transmission system.
摘要:
An undersea repeaterless optical transmission system is disclosed including first and second stations connected by a communication link which may comprise one or more optical fibers. The system further includes a dedicated Raman pumping path originating from a third intermediate station and interacting with the communication link at an undersea body positioned between the first and second stations. This dedicated Raman pumping path may comprise one or more optical fibers. Communications signals are propagated only between the first and second stations, while the third intermediate station provides only Raman pumping via the pumping path which is used to boost signal power in the communication link between the first and second stations. By limiting this pumping path to Raman pumping only substantially more pumping power can be provided through the path since power is not limited by the equation of a communications signal. The disclosed system architecture facilitates increased capacity (or reach) on the repeaterless link between the first and second stations.
摘要:
Briefly, in accordance with one or more embodiments, a band of signal carriers is divided into a first band of carriers and a second band of carriers. The carriers in the first band comprise shorter wavelength carriers, and carriers in the second band comprise longer wavelength carriers. Each of the optical sources in the first and second bands of carriers are modulated with an input signal and coupled together via a polarization maintaining coupler. These signals are then combined via a polarization beam combiner wherein the first band has a polarization state that is orthogonal, or nearly orthogonal, to a polarization of the second state.
摘要:
An inverse multiplexing communication path is established in at least one direction between nodes connected by a plurality of lower bandwidth bearing channels between the nodes, on which the content of a higher bandwidth signal is distributed and from which the original high bandwidth signal is recovered at the receiving node. During preliminary configuration, for example when selecting a subset of bearer channels from among a number of potential bearer channels, the bearer channels are chosen or are altered by signal processing to make the members of the subset perform similarly, thereby improving operations as compared to having the bearer channels bound to perform according to the performance of the least-performing member of the subset.
摘要:
An optical communication system supporting detection and communication networks. A communication network transmission path and the detection network transmission path are provided as separate paths established by separate fibers or fiber pairs of the same optical fiber cable. All of the elements coupled to the communication network transmission path and the detection network transmission path may be powered by the same power feed equipment through the same optical fiber cable power conductor.