摘要:
This invention provides a system and method for aligning, feeding, trimming, slitting, rotating, cross-slitting and stacking sheets, each containing one or more discrete page images thereon that allows for greater automation of the overall process so that reduced or no manual intervention is required to generate completed book stacks or “blocks” from a stream or stack of printed sheets. Sheets are fed to a first, upstream trimming station to remove margin edges and optionally separate the sheets relative to the discrete page images. The sheets are then rotated 90 degrees and fed to a second, downstream trimming station that trims the right-angle edges and optionally separates the sheets into a final group of full-bleed pages, removing margins and gutter strips. The sheets are fed to a stacking assembly to be tacked in page order and any rejected, defective sheets or stacks are removed from the order.
摘要:
This invention provides a system and method for aligning, feeding, trimming, slitting, rotating, cross-slitting and stacking sheets, each containing one or more discrete page images thereon that allows for greater automation of the overall process so that reduced or no manual intervention is required to generate completed book stacks or “blocks” from a stream or stack of printed sheets. Sheets are fed to a first, upstream trimming station to remove margin edges and optionally separate the sheets relative to the discrete page images. The sheets are then rotated 90 degrees and fed to a second, downstream trimming station that trims the right-angle edges and optionally separates the sheets into a final group of full-bleed pages, removing margins and gutter strips. The sheets are fed to a stacking assembly to be tacked in page order and any rejected, defective sheets or stacks are removed from the order.
摘要:
This invention provides a system and method for separating, folding, stacking and transporting a continuous web that allows stacks of web that are relatively large (four-feet-high or more) to be generated at high speed directly beneath the folding mechanism and to be transferred as complete, discrete stacks to downstream locations and stack utilization devices without interrupting the ongoing, upstream stack-folding and stack-formation process. A zigzag folded web passes by a pair of opposing front and rear compression plate assemblies, with fingers that are extended to selectively project into the folding area, onto a stack supported by a vertically moving supporting mechanism. The supporting mechanism cycles between an ever-lower position in which upper, loose pages of the folded web pass by plate fingers (when retracted) and an upper position in which the stack engages and presses upwardly against the now-extended plate fingers to compress the stack. After the web is separated above the chute, the supporting mechanism eventually travels to the base where the now-completed stack is conveyed to a downstream location. While the supporting mechanism is occupied transferring the completed, old stack, new folded web is deposited on a deployed temporary support that allows a new stack to form thereon until the supporting mechanism has completed the transfer of the old stack, and is ready to receive the new stack from the temporary support.