摘要:
Systems, methods, and instrumentalities are disclosed that provide for a gateway outside of a network domain to provide services to a plurality of devices. For example, the gateway may act as a management entity or as a proxy for the network domain. As a management entity, the gateway may perform a security function relating to each of the plurality of devices. The gateway may perform the security function without the network domain participating or having knowledge of the particular devices. As a proxy for the network, the gateway may receive a command from the network domain to perform a security function relating to each of a plurality of devices. The network may know the identity of each of the plurality of devices. The gateway may perform the security function for each of the plurality of devices and aggregate related information before sending the information to the network domain.
摘要:
Methods, components and apparatus for implementing platform validation and management (PVM) are disclosed. PVM provides the functionality and operations of a platform validation entity with remote management of devices by device management components and systems such as a home node-B management system or component. Example PVM operations bring devices into a secure target state before allowing connectivity and access to a core network.
摘要:
Systems, methods, and apparatus are provided for generating verification data that may be used for validation of a wireless transmit-receive unit (WTRU). The verification data may be generated using a tree structure having protected registers, represented as root nodes, and component measurements, represented as leaf nodes. The verification data may be used to validate the WTRU. The validation may be performed using split-validation, which is a form of validation described that distributes validation tasks between two or more network entities. Subtree certification is also described, wherein a subtree of the tree structure may be certified by a third party.
摘要:
Systems, methods, and apparatus are provided for generating verification data that may be used for validation of a wireless transmit-receive unit (WTRU). The verification data may be generated using a tree structure having protected registers, represented as root nodes, and component measurements, represented as leaf nodes. The verification data may be used to validate the WTRU. The validation may be performed using split-validation, which is a form of validation described that distributes validation tasks between two or more network entities. Subtree certification is also described, wherein a subtree of the tree structure may be certified by a third party.
摘要:
An apparatus and method for providing home evolved node-B (H(e)NB) integrity verification and validation using autonomous validation and semi-autonomous validation is disclosed herein.
摘要:
A wireless communications device may be configured to perform integrity checking and interrogation with a network entity to isolate a portion of a failed component on the wireless network device for remediation. Once an integrity failure is determined on a component of the device, the device may identify a functionality associated with the component and indicate the failed functionality to the network entity. Both the wireless network device and the network entity may identify the failed functionality and/or failed component using a component-to-functionality map. After receiving an indication of an integrity failure at the device, the network entity may determine that one or more additional iterations of integrity checking may be performed at the device to narrow the scope of the integrity failure on the failed component. Once the integrity failure is isolated, the network entity may remediate a portion of the failed component on the wireless communications device.
摘要:
An apparatus and method for providing home evolved node-B (H(e)NB) integrity verification and validation using autonomous validation and semi-autonomous validation is disclosed herein.
摘要:
Persistent communication layer credentials generated on a persistent communication layer at one network may be leveraged to perform authentication on another. For example, the persistent communication layer credentials may include application-layer credentials derived on an application layer. The application-layer credentials may be used to establish authentication credentials for authenticating a mobile device for access to services at a network server. The authentication credentials may be derived from the application-layer credentials of another network to enable a seamless handoff from one network to another. The authentication credentials may be derived from the application-layer credentials using reverse bootstrapping or other key derivation functions. The mobile device and/or network entity to which the mobile device is being authenticated may enable communication of authentication information between the communication layers to enable authentication of a device using multiple communication layers.
摘要:
A wireless communications device may be configured to perform integrity checking and interrogation with a network entity to isolate a portion of a failed component on the wireless network device for remediation. Once an integrity failure is determined on a component of the device, the device may identify a functionality associated with the component and indicate the failed functionality to the network entity. Both the wireless network device and the network entity may identify the failed functionality and/or failed component using a component-to-functionality map. After receiving an indication of an integrity failure at the device, the network entity may determine that one or more additional iterations of integrity checking may be performed at the device to narrow the scope of the integrity failure on the failed component. Once the integrity failure is isolated, the network entity may remediate a portion of the failed component on the wireless communications device.
摘要:
Systems, methods, and instrumentalities are disclosed that may provide for integration of trusted OpenID (TOpenID) with OpenID. The authentication may be accomplished, in part, via communications between a trusted ticket server on a UE and a network application function. The UE may retrieve platform validation data (e.g., from a trusted platform module on the UE). The UE may receive a platform verification in response to the platform validation data. The platform verification may indicate that the network application function has verified the platform validation data and the user. The platform verification may indicate that the platform validation data matches a previously generated reference value.