Abstract:
A method for detecting anomalies in signal behaviors in a simulation of a low power IC includes receiving a circuit design and a power specification of the IC, determining at least one power sequence checking rule from the power specification, simulating the circuit design and the power specification to obtain a dump file, identifying at least one anomaly of the at least one power sequence checking rule based on the dump file, and generating information relevant to the identified anomaly of the at least one power sequence checking rule. The method further includes setting up a context in a debugger for debugging the anomaly by displaying a waveform of misbehaved signals associated with the anomaly in a waveform window, and a portion of the circuit design and/or a portion of the power specification associated with the anomaly in a text window.
Abstract:
A computer-implemented method for debugging the power aspect of an IC design by integrating the power specification expressed in certain power specification format and its corresponding circuit design within a power schematic diagram called power map. Power map is created by using a power data base generated by regrouping the original circuit design hierarchy to new hierarchies defined by the power specification. Power map contains power cell symbols (such as isolation cells, level shifters, power switches) and signal nets, and can show the relationship between power domains. Power map can also display mismatches or errors between the power specification and the circuit design for those signals connecting the power domains. Furthermore, power map can be used in conjunction with simulation result.
Abstract:
A method for detecting anomalies in signal behaviors in a simulation of a low power IC includes receiving a circuit design and a power specification of the IC, determining at least one power sequence checking rule from the power specification, simulating the circuit design and the power specification to obtain a dump file, identifying at least one anomaly of the at least one power sequence checking rule based on the dump file, and generating information relevant to the identified anomaly of the at least one power sequence checking rule. The method further includes setting up a context in a debugger for debugging the anomaly by displaying a waveform of misbehaved signals associated with the anomaly in a waveform window, and a portion of the circuit design and/or a portion of the power specification associated with the anomaly in a text window.
Abstract:
Power information associated with an IC design is displayed graphically and hierarchically using a power map, thereby providing an intuitive way for describing the power distribution among various power domains of the IC and parent-child relationships within the power domains. Each power domain is associated with a power control for controlling the power domain. The status of the power control for each power domain is displayed on the power map. The power map may include a token to set and display current operating mode of the IC design to enable the IC design to be debugged under different operating modes.
Abstract:
A computer-implemented method for debugging the power aspect of an IC design by integrating the power specification expressed in certain power specification format and its corresponding circuit design within a power schematic diagram called power map. Power map is created by using a power data base generated by regrouping the original circuit design hierarchy to new hierarchies defined by the power specification. Power map contains power cell symbols (such as isolation cells, level shifters, power switches) and signal nets, and can show the relationship between power domains. Power map can also display mismatches or errors between the power specification and the circuit design for those signals connecting the power domains. Furthermore, power map can be used in conjunction with simulation result.