Abstract:
Provided are a negative electrode active material for a lithium ion secondary battery, which has sufficiently high discharge capacity at a high rate. The negative electrode active material containing silicon and silicon oxide includes primary particles having two phases of different compositions therein. One of the two phases has a higher silicon element concentration than the other phase, and is a fibrous phase forming a network structure in a cross section of the primary particle. Use of the negative electrode active material enables a sufficient increase in discharge capacity at a high rate.
Abstract:
The negative electrode for lithium-ion secondary battery is used in which a product of tensile strength and thickness of a negative electrode having a negative electrode active material layer containing silicon and silicon oxide as main components is 3.8 to 9.0 N/mm and a value obtained by dividing the product of the tensile strength and the thickness of the negative electrode by a product of tensile strength and thickness of a negative electrode current collector is 1.06 to 1.29.
Abstract:
A negative electrode active material is provided for a lithium ion secondary battery having high initial charging/discharging efficiency. The negative electrode active material containing silicon and silicon oxide has two phases with different compositions therein. One of the two phases has a lower silicon element concentration than the other phase, and is a fibrous phase forming a network structure in a cross section of primary particle of the negative electrode active material. Use of the negative electrode active material enables a sufficient increase in initial charging/discharging efficiency.
Abstract:
A negative electrode active material with sufficiently high discharge capacity at a high rate, and a negative electrode and a lithium ion secondary battery using the negative electrode active material. A negative electrode active material according to the invention includes a negative electrode active material particle containing silicon and silicon oxide, wherein a surface layer part of the negative electrode active material particle is a layer with lower density than a core part of the negative electrode active material particle. With such a structure of the negative electrode active material, the sufficiently high discharge capacity at a high rate can be obtained.
Abstract:
A negative electrode active material mainly contains silicon and silicon oxide. In the negative electrode active material, an Ar-laser Raman spectrum thereof includes a peak A corresponding to 950±30 cm−1 and a peak B corresponding to 480±30 cm−1, and an intensity ratio of the peak B to the peak A (B/A) is in the range of 1 to 10.
Abstract:
A negative electrode for a lithium ion secondary battery, which has high energy density and which can suppress a crease (form change) of a negative electrode active material layer and a negative electrode current collector caused by the expansion and contraction occurring along with the quick charging and discharging and also suppress the falloff of the negative electrode active material layer after the quick charging and discharging cycle, and a lithium ion secondary battery using the negative electrode. The negative electrode for a lithium ion secondary battery and the lithium ion secondary battery include: a negative electrode active material including 5% or more of silicon or silicon oxide; a binder that is polyacrylate whose carboxylic groups at terminals of side chains of polyacrylic acid are cross-linked with magnesium or alkaline earth metal; and a negative electrode current collector.
Abstract:
In the invention, a lithium-ion secondary battery, in which a value obtained by dividing average 3% modulus strength of a separator by average 3% modulus strength of a negative electrode including a negative electrode active material layer containing silicon and silicon oxide as a main component is 0.079 or less, is used.
Abstract:
A lithium ion secondary battery includes a positive electrode including a positive electrode active material having a composition represented by the formula (1) LixNiyCozMtO2 (1) (wherein the element M is at least one kind selected from the group consisting of Mg, Ba, Al, Ti, Mn, V, Fe, Zr, and Mo and x, y, z, and t satisfy the following formulae: 0.9≦x≦1.2, 0≦y≦1.1, 0≦z≦1.1, and 0≦t≦1.1), and a negative electrode including a negative electrode active material mainly containing silicon and silicon oxide, and having an absorbance of 0.01 to 0.035 at 2110±10 cm−1 according to an FT-IR method.
Abstract translation:锂离子二次电池包括具有由式(1)表示的组成的正极活性物质Li x Ni y Co z M t O 2(1)的正极(其中,元素M为选自Mg,Ba,Al中的至少一种 ,Ti,Mn,V,Fe,Zr和Mo,x,y,z和t满足下列公式:0.9 @ x @ 1.2,0 @ y @ 1.1,0 @ z @ 1.1和0 @ 1.1),以及包含主要含有硅和氧化硅的负极活性物质的负极,根据FT-IR方法,在2110±10cm -1处的吸光度为0.01〜0.035。
Abstract:
A negative electrode includes a negative electrode active material layer containing a negative electrode active material mainly containing silicon and silicon oxide. In the negative electrode, the ratio of the film thickness of the negative electrode active material layer to the particle size distribution D99 is in the range of 1.2 to 2.0, the value of the D99 is in the range of 7 to 27 μm, and the negative electrode active material layer has a density ranging from 1.2 to 1.6 g/cm3.
Abstract translation:负极包括含有主要含有硅和氧化硅的负极活性物质的负极活性物质层。 在负极中,负极活性物质层的膜厚与粒径分布D99的比例在1.2〜2.0的范围内,D99的值在7〜27μm的范围内, 负极活性物质层的密度为1.2〜1.6g / cm 3。