Abstract:
A gas sensor includes a feedback circuit part and a sensor circuit part. The feedback circuit part includes a reference resistor and a first temperature sensing element which are connected in series, a first heater resistor that heats the first temperature sensing element, and a first amplifier circuit that controls the amount of current to flow in the first heater resistor based on an internal potential. The sensor circuit part includes a second temperature sensing element and a second heater resistor that heats the second temperature sensing element. A current according to the output of the first amplifier circuit flows in the second heater resistor. With this configuration, it is possible to automatically change the amount of current to flow in the second heater resistor according to ambient temperature without digital processing to thereby heat the second temperature sensing element to a constant temperature.
Abstract:
An object of the present invention is to provide a magnetic sensor having enhanced magnetic detection sensitivity by bending magnetic flux more largely. A magnetic sensor includes magnetic detection elements MR1 and MR2 positioned on a plane P separating a first space S1 and a second space S2, a first magnetic member 31 disposed in the first space S1 so as to be between the magnetic detection elements MR1 and MR2 when viewed in the z-direction, and a second magnetic member 32 disposed in the second space S2. The magnetic detection element MR1 is positioned between the first magnetic member 31 and a first part 32a of the second magnetic member 32 when viewed in the z-direction. The magnetic detection element MR2 is positioned between the first magnetic member 31 and a second part 32b of the second magnetic member 32 when viewed in the z-direction. According to the present invention, magnetic flux collected by the first magnetic member is attracted to the first and second parts of the second magnetic member, allowing the magnetic flux to be bent more largely. Thus, the magnetic detection sensitivity of the magnetic sensor can be enhanced.
Abstract:
The present invention relates to a magnetic sensor which can detect a weak magenetic field and improve the detection precision with an easy and convenient configuration. A magnetic sensor is provided with a magnetic body changing the direction of a magnetic field input to a magnetoresistance effect element in the vicinity of the magnetoresistance effect element in which the resistance value changes according to the direction of the input magnetic field, the magnetic body has at leas one projection portion in the direction almost parallel to direction in which the magnetic induction occurs in the magnetoresistance effect element. The direction in which the projection portion of the magnetic body projects is substantially parallel to the direction in which the magnetization of the magnetoresistance effect element is fixed.
Abstract:
An object of the present invention is to provide a magnetic sensor less subject to an environmental magnetic field. A magnetic sensor includes magnetic detection elements MR1 to MR4 positioned on a first plane P1 and a magnetic member 30A provided on a second plane P2. The magnetic member 30A includes first and second leg parts 41 and 42 and a first main body part 51 positioned between the first and second leg parts 41 and 42 so as to form a first space 61 between itself and the second plane P2. The magnetic detection elements MR1 to MR4 are covered with the first main body part 51. According to the present invention, magnetic field to be detected is collected to the first and second leg parts 41 and 42, and the magnetic detection elements MR1 to MR4 are covered with the first main body part 51, thereby allowing an environmental magnetic field acting as noise to bypass the magnetic detection elements MR1 to MR4 through the first main body part 51. Thus, influence of the environmental magnetic field can be reduced.
Abstract:
A magnetism-detecting device and a moving-body-detecting device, capable of detecting a movement of a moving body that is not a magnetic body. The moving-body-detecting device includes the magnetism-detecting device and a rotating body that moves with respect to the magnetism-detecting device. The magnetism-detecting device has a coil for generating an alternating magnetic field and a magnetic sensor to which the magnetic field generated by the coil is applied. The rotation of the rotating body changes the magnetic field applied to the magnetic sensor. An output signal from the magnetic sensor is synchronously detected using a signal that is supplied to the coil in order to generate the alternating magnetic field.
Abstract:
A magnetic field detecting sensor includes a bridge circuit which is connected to multiple magnetoresistive effect elements and is capable of outputting a differential voltage between specified connection points, a magnetic field generating conductor for providing the magnetoresistive effect elements with a magnetic field in a direction opposite to that of the detection magnetic field by disposing a magnetic body near the center of the bridge circuit, a differential operation circuit which the differential voltage is input in and makes a feedback current flow to the magnetic field generating conductor, wherein the feedback current generates the magnetic field in a direction opposite to that of the detection magnetic field in the magnetic field generating conductor, and a voltage converting circuit for outputting the feedback current as a voltage value. The magnetic field generating conductor and the magnetoresistive effect elements are formed in the same stacked body.
Abstract:
Disclosed herein is a sensor module that includes a substrate having a top surface and a back surface, a sensor element mounted on the top surface of the substrate, an external terminal formed on the back surface of the substrate, and a case fixed to the substrate so as to cover the sensor element. The case has a top plate part having a plurality of through holes. The top plate part has a center area having no through holes and a through hole formation area having the plurality of through holes, the through hole formation area being positioned so as to surround the center area.
Abstract:
An object of the present invention is to provide a magnetic sensor that can reduce influences of a disturbance magnetic field while ensuring high detection sensitivity. The magnetic sensor includes a sensor chip 20 having an element formation surface 20S on which magnetic detection elements MR3, MR4 are formed, a first magnetic member 31 placed on the element formation surface 20S and having a first height H1 as a height from the element formation surface 20S, and a second magnetic member 32 located on an opposite side of the magnetic detection elements MR3, MR4 to the first magnetic member 31 and having a second height H2 lower than the first height H1. According to the present invention, because the height H2 of the second magnetic member 32 is lower than that of the first magnetic member 31, a detection magnetic field attracted to the second magnetic member 32 can be reduced while a disturbance magnetic field is shielded by the second magnetic member 32. Accordingly, influences of the disturbance magnetic field can be reduced while high detection sensitivity is ensured.
Abstract:
The present invention relates to a magnetic sensor which can improve the detection precision of a weak magnetic field and can be downsized. A magnetic sensor is provided with a magnetic body changing the direction of a magnetic field input to a magnetoresistance effect element in the vicinity of the magnetoresistance effect element in which the resistance value changes according to the direction of the input magnetic field, the magnetic body has a mean for changing the direction of a magnetic field on the surface at a side where the magnetoresistance effect element is formed. The chamfer part of the magnetic body may be chamfered with a shape having at least one flat surface.
Abstract:
The present invention relates to a magnetic sensor which can improve the detection precision of a weak magnetic field. A magnetic sensor wherein a magnetic body which changes the direction of a magnetic field input to a magnetoresistance effect element is provided in the vicinity of the magnetoresistance effect element in which the resistance value changes according to the direction of the input magnetic field, and the magnetic body has a recess with a concave shape on the surface at a side where the magnetoresistance effect element is formed. The center of the recess may be substantially identical to that of the magnetic body. The concave shape may at least include polygon having three or more sides, or may at least include arc.