Abstract:
Mach-Zehnder optical modulators and IQ modulators based on a series push-pull travelling wave electrode are provided. The modulator includes a conductive backplane providing an electrical signal path. One or more voltage control taps are electrically connected to the conductive backplane within an area underneath the travelling wave electrode and provide an equalizing DC control voltage to the conductive backplane. In other variants, a plurality of conductive backplane segments are provided, and at least one voltage control tap is electrically connected to each conductive backplane segment within an area underneath the travelling wave electrode and provides a DC control voltage to the corresponding conductive backplane segment.
Abstract:
A Mach-Zehnder optical modulator with a travelling wave electrode has a signal transmission line conductor (S) carrying an input electrical signal, and two ground transmission line conductors (G1 and G2) providing a return path for the electrical signal. The signal transmission line conductor is positioned between the first and second ground lines, and the first and second optical waveguide branches are positioned between the signal transmission line conductor and the first ground line. The modulator therefore has a GSG structure providing an asymmetrically-loaded configuration.
Abstract:
A monolithic optoelectronic device has a spot-size converter optically connected to a waveguide. The overclad extending over the core of the waveguide is thinner and differently doped than the overclad of the spot-size converter. This structure can be made by applying a process of etching and enhanced selective area regrowth to create regions of the overclad of different thickness or doping. The spot-size converter core is made of a different material than the waveguide core by using etching and enhanced selective area regrowth.
Abstract:
A monolithic optoelectronic device has a spot-size converter optically connected to a waveguide. The overclad extending over the core of the waveguide is thinner and differently doped than the overclad of the spot-size converter. This structure can be made by applying a process of etching and enhanced selective area regrowth to create regions of the overclad of different thickness or doping. The spot-size converter core is made of a different material than the waveguide core by using etching and enhanced selective area regrowth.
Abstract:
A Mach-Zehnder optical modulator with a travelling wave electrode has a signal transmission line conductor (S) carrying an input electrical signal, and two ground transmission line conductors (G1 and G2) providing a return path for the electrical signal. The signal transmission line conductor is positioned between the first and second ground lines, and the first and second optical waveguide branches are positioned between the signal transmission line conductor and the first ground line. The modulator therefore has a GSG structure providing an asymmetrically-loaded configuration.
Abstract:
A Mach-Zehnder optical modulator with a travelling wave electrode having one or more signal transmission line conductors and one or more ground transmission line conductors is provided. The modulator includes a ground strip conductor extending substantially in parallel to the ground transmission line conductors, and a distributed bridging structure electrically connecting the ground strip conductor and at least one of the ground transmission line conductors along a substantial portion of a length thereof. The distributed bridging structure may be embodied by a plurality of electrical connections at disposed regularly spaced intervals.