Abstract:
A wireless device includes a preamble detector configured to identify preambles transmitted via a random access channel of a wireless network. The preamble detector includes preamble false alarm logic. The preamble false alarm logic is configured to set a preamble false alarm detection window, and compare, to one another, preambles identified in the false alarm detection window. The preamble false alarm logic is configured to identify, based on the comparison, a largest of the preambles in the false alarm detection window, and reject all but the identified largest of the preambles as false alarm detections.
Abstract:
Methods and apparatus are disclosed low power motion detection by a radar apparatus. One example radar apparatus includes a transmitter to transmit a pattern of chirps. The transmitted pattern includes a first series of chirps transmitted during a first time period and a second series of chirps transmitted during a second time period that begins after passage of a sleep time period from an end of the first time period. The example radar apparatus also includes a receiver to detect returning chirps including reflected portions of the transmitted pattern. The example radar apparatus also includes analog to digital converter (ADC) coupled to the receiver. The ADC is to sample analog signals from the receiver to generate ADC samples for the returning chirps detected by the receiver.
Abstract:
A wireless device includes a preamble detector configured to identify a plurality of preambles transmitted via a random access channel of a wireless network. The preamble detector includes a noise floor estimator. The noise floor estimator is configured to: estimate, for a given preamble root sequence identified by the preamble detector, a noise floor value as mean energy of received signal samples, excluding detected preamble samples on the give preamble root sequence, below a noise floor threshold assigned to the given preamble root sequence. The noise floor estimator is configured to compute the noise floor threshold as a product of: average energy of the received signal samples less total signal energy contained in each cyclic prefix window in which a preamble is detected using the given preamble root sequence; and a predetermined normalized relative noise floor threshold based on a target false preamble detection rate.
Abstract:
A wireless device includes a preamble detector configured to identify preambles transmitted via a random access channel of a wireless network. The preamble detector includes preamble false alarm logic. The preamble false alarm logic is configured to set a preamble false alarm detection window, and compare, to one another, preambles identified in the false alarm detection window. The preamble false alarm logic is configured to identify, based on the comparison, a largest of the preambles in the false alarm detection window, and reject all but the identified largest of the preambles as false alarm detections.
Abstract:
A wireless device includes a preamble detector configured to identify a plurality of preambles transmitted via a random access channel of a wireless network. The preamble detector includes a noise floor estimator. The noise floor estimator is configured to: estimate, for a given preamble root sequence identified by the preamble detector, a noise floor value as mean energy of received signal samples, excluding detected preamble samples on the give preamble root sequence, below a noise floor threshold assigned to the given preamble root sequence. The noise floor estimator is configured to compute the noise floor threshold as a product of: average energy of the received signal samples less total signal energy contained in each cyclic prefix window in which a preamble is detected using the given preamble root sequence; and a predetermined normalized relative noise floor threshold based on a target false preamble detection rate.