Abstract:
Excessive latencies and power consumption are avoided when a large number of leaf nodes (LNs) contend simultaneously to join a time slotted channel hopping wireless communication network having a root node (RN) interfaced to LNs by one or more intermediate nodes (INs). A first plurality of shared transmit/receive slots (STRSs) is allocated for at least one IN, and a second plurality of STRSs is advertised for use by contending LNs, where the first plurality is larger than the second plurality. When a LN joins, its STRSs are re-defined such that most become shared transmit-only slots (STOSs) and no STRSs remain. The numbers of STRSs allocated to INs may vary inversely with their hop counts from the RN. One or more STOSs may be added for each of one or more INs in response to a predetermined network condition.
Abstract:
A method for channel switching by a secondary node. The method includes: receiving, from a primary node, a downlink transmission, measuring one or more statistics about the downlink transmission, determining, from the downlink transmission, an uplink interval, transmitting, to the primary node during the uplink interval, the measured one or more statistics about the downlink transmission, receiving, from the primary node, an indication of a set of useable channels, determining, based on the set of useable channels and at least one of the primary node or the secondary node, a next channel from the set of useable channels, and switching to the next channel based on a switch indication from the primary node.
Abstract:
An emulated wireless access point (AP) at a first PMC device (PMC1) establishes a first tunneled direct link setup (TDLS) session between a first station module (STA1) incorporated into the PMC1 and a second station module (STA2) incorporated into a second PMC device (PMC2). Following establishment of the TDLS session, the wireless AP is allowed to sleep; and most infrastructure management duties are handled by the STA1 during the session. PMC device battery charge may be conserved as a result. The emulated wireless AP may also establish a second TDLS link to a third station module (STA3) incorporated into a third PMC device (PMC3). The STA1 may then bridge data traffic flow between the STA2 and the STA3. Such bridging operation may enable communication between two PMC devices otherwise unable to decode data received from the other.
Abstract:
Apparatus, systems, and methods disclosed herein operate to provide wireless communication between personal mobile communication (PMC) devices. An emulated wireless access point (AP) at a first PMC device (PMC1) establishes a first tunneled direct link setup (TDLS) session between a first station module (STA1) incorporated into the PMC1 and a second station module (STA2) incorporated into a second PMC device (PMC2). Following establishment of the TDLS session, the wireless AP is allowed to sleep; and most infrastructure management duties are handled by the STA1 during the session. PMC device battery charge may be conserved as a result. The emulated wireless AP may also establish a second TDLS link to a third station module (STA3) incorporated into a third PMC device (PMC3). The STA1 may then bridge data traffic flow between the STA2 and the STA3. Such bridging operation may enable communication between two PMC devices otherwise unable to decode data received from the other.
Abstract:
Methods, apparatus, systems, and articles of manufacture are disclosed to improve one-hop extension in wireless battery management systems. An example apparatus is to cause transmission of an instruction to a first battery monitoring node (BMN) of a vehicle, the first BMN in communication with the apparatus the instruction to cause the first BMN to operate as a repeater for a second BMN of the vehicle, the second BMN noncommunicative with the apparatus. The example apparatus is to process an acknowledgement from the first BMN indicating that the first BMN has configured to operate as the repeater. Additionally, the example apparatus is to cause transmission of a communication to at least the first BMN indicating a time at which at least the first BMN is to perform a first action associated with a first battery and the second BMN is to perform a second action associated with a second battery.
Abstract:
An emulated wireless access point (AP) at a first PMC device (PMC1) establishes a first tunneled direct link setup (TDLS) session between a first station module (STA1) incorporated into the PMC1 and a second station module (STA2) incorporated into a second PMC device (PMC2). Following establishment of the TDLS session, the wireless AP is allowed to sleep; and most infrastructure management duties are handled by the STA1 during the session. PMC device battery charge may be conserved as a result. The emulated wireless AP may also establish a second TDLS link to a third station module (STA3) incorporated into a third PMC device (PMC3). The STA1 may then bridge data traffic flow between the STA2 and the STA3. Such bridging operation may enable communication between two PMC devices otherwise unable to decode data received from the other.
Abstract:
Excessive latencies and power consumption are avoided when a large number of leaf nodes (LNs) contend simultaneously to join a time slotted channel hopping wireless communication network having a root node (RN) interfaced to LNs by one or more intermediate nodes (INs). A first plurality of shared transmit/receive slots (STRSs) is allocated for at least one IN, and a second plurality of STRSs is advertised for use by contending LNs, where the first plurality is larger than the second plurality. When a LN joins, its STRSs are re-defined such that most become shared transmit-only slots (STOSs) and no STRSs remain. The numbers of STRSs allocated to INs may vary inversely with their hop counts from the RN. One or more STOSs may be added for each of one or more INs in response to a predetermined network condition.
Abstract:
Excessive latencies and power consumption are avoided when a large number of leaf nodes (LNs) contend simultaneously to join a time slotted channel hopping wireless communication network having a root node (RN) interfaced to LNs by one or more intermediate nodes (INs). A first plurality of shared transmit/receive slots (STRSs) is allocated for at least one IN, and a second plurality of STRSs is advertised for use by contending LNs, where the first plurality is larger than the second plurality. When a LN joins, its STRSs are re-defined such that most become shared transmit-only slots (STOSs) and no STRSs remain. The numbers of STRSs allocated to INs may vary inversely with their hop counts from the RN. One or more STOSs may be added for each of one or more INs in response to a predetermined network condition.
Abstract:
A method of operating a network on a plurality of frequency hopping channels is disclosed. The method includes transmitting a beacon on a beacon channel different from the frequency hopping channels and receiving a request from a node to join the network in response to the beacon. The method further includes adding the node to the network in response to the step of receiving and communicating with the node on the plurality of frequency hopping channels after the step of adding.
Abstract:
An example apparatus includes: interface circuitry; and programmable circuitry configured to: transmit a first schedule to a set of battery modules, the first schedule to assign transmission slots to one or more of the set of battery modules for a first communication period; create a second schedule different from the first schedule; and transmit the second schedule to the set of battery modules, the second schedule to assign transmission slots to one or more of the set of battery modules for a second communication period.