Abstract:
Apparatus and methods disclosed herein perform gain, clipping, and phase compensation in the presence of I/Q mismatch in quadrature RF receivers. Gain and phase mismatch are exacerbated by differences in clipping between I & Q signals in low resolution ADCs. Signals in the stronger channel arm are clipped differentially more than weaker signals in the other channel arm. Embodiments herein perform clipping operations during iterations of gain mismatch calculations in order to balance clipping between the I and Q channel arms. Gain compensation coefficients are iteratively converged, clipping levels are established, and data flowing through the network is gain and clipping compensated. A compensation phase angle and phase compensation coefficients are then determined from gain and clipping compensated sample data. The resulting phase compensation coefficients are applied to the gain and clipping corrected receiver data to yield a gain, clipping, and phase compensated data stream.
Abstract:
A wireless receiver for multiple frequency bands reception includes a single receive radio frequency (RF) circuit (160, 170) having an RF bandpass substantially confined to encompass at least two non-overlapped such frequency bands at RF, a single in-phase and quadrature (approximately I, Q) pair of intermediate frequency (IF) sections (120I, 120Q) having an IF passband, and a mixer circuit (110) including an in-phase and quadrature (I,Q) pair of mixers (110I, 110Q) fed by said RF circuit (160, 170) and having a local oscillator (100) with in-phase and quadrature outputs coupled to said mixers (110I, 110Q) respectively, said mixer circuit (110) operable to inject and substantially overlap the at least two non-overlapped frequency bands with each other into the IQ IF sections (120I, 120Q) in the IF passband, the IF passband substantially confined to a bandwidth encompassing the thereby-overlapped frequency bands.
Abstract:
Automatic gain control in a receiver. A method for controlling operating range of an analog-to-digital converter (ADC) by an automatic gain control circuit includes estimating a peak-to-average ratio corresponding to an analog signal from digital samples of the analog signal. The method includes determining a peak value corresponding to the analog signal based on the peak-to-average ratio. Further, the method includes maintaining magnitude of the analog signal at an input of the ADC and gain of the receiver based on the peak value.
Abstract:
An electronic circuit separates frequency-overlapped GLONASS and GPS overlapped in an approximately 4 MHz passband. The circuit uses a multiple-path analog-to-digital converter circuit (ADC). A sampling rate circuit is coupled to concurrently operate the analog-to-digital converter circuit at a sampling rate between about 60 Msps and about 80 Msps. A digital processing circuit includes storage defining complex de-rotation and low pass filtering. The digital processing circuit is fed by the analog-to-digital converter circuit and is operable A) to establish an access rate and respective distinct phase increments for the complex de-rotation, B) to execute the complex de-rotation by combinations of trigonometric multiplications using the distinct phase increments approximately concurrently and C) to execute the low pass filtering on the complex de-rotation resulting at the access rate and respective distinct phase increments, thus delivering GPS and Glonass signals separated from each other.
Abstract:
Apparatus and methods disclosed herein perform gain, clipping, and phase compensation in the presence of I/Q mismatch in quadrature RF receivers. Gain and phase mismatch are exacerbated by differences in clipping between I & Q signals in low resolution ADCs. Signals in the stronger channel arm are clipped differentially more than weaker signals in the other channel arm. Embodiments herein perform clipping operations during iterations of gain mismatch calculations in order to balance clipping between the I and Q channel arms. Gain compensation coefficients are iteratively converged, clipping levels are established, and data flowing through the network is gain and clipping compensated. A compensation phase angle and phase compensation coefficients are then determined from gain and clipping compensated sample data. The resulting phase compensation coefficients are applied to the gain and clipping corrected receiver data to yield a gain, clipping, and phase compensated data stream.
Abstract:
Automatic gain control in a receiver. A method for controlling operating range of an analog-to-digital converter (ADC) by an automatic gain control circuit includes estimating a peak-to-average ratio corresponding to an analog signal from digital samples of the analog signal. The method includes determining a peak value corresponding to the analog signal based on the peak-to-average ratio. Further, the method includes maintaining magnitude of the analog signal at an input of the ADC and gain of the receiver based on the peak value.
Abstract:
Automatic gain control in a receiver. A method for controlling operating range of an analog-to-digital converter (ADC) by an automatic gain control circuit includes estimating a peak-to-average ratio corresponding to an analog signal from digital samples of the analog signal. The method includes determining a peak value corresponding to the analog signal based on the peak-to-average ratio. Further, the method includes maintaining magnitude of the analog signal at an input of the ADC and gain of the receiver based on the peak value.
Abstract:
Automatic gain control in a receiver. A method for controlling operating range of an analog-to-digital converter (ADC) by an automatic gain control circuit includes estimating a peak-to-average ratio corresponding to an analog signal from digital samples of the analog signal. The method includes determining a peak value corresponding to the analog signal based on the peak-to-average ratio. Further, the method includes maintaining magnitude of the analog signal at an input of the ADC and gain of the receiver based on the peak value.