Abstract:
A device operated in a network using a channel hopping communication protocol may select a channel for each transmission by first generating and storing a sequence of pseudo-random index numbers. A list of good channels is selected from a plurality of channels. For each channel hop, one of the good channels is selected from the list of good channels for use by a transceiver in the device by using an index number selected from the sequence of pseudo-random index numbers. The list of good channels may be revised periodically and channels may be selected from the list of good channels for use by the transceiver without revising the sequence of pseudo-random index numbers.
Abstract:
Disclosed examples include methods and network devices for communicating in a wireless network, in which the device generates frequency hopping sequence y(j) having a prime number sequence length p, using cyclotomic classes in a field of p or using a baby-step giant-step algorithm, where y(0)=p−1 and the remaining sequence values y(j)=logα(j) mod (p−1). In certain examples, α=2 and the sequence is generated without solving logarithms using one or more algorithms to conserve memory and processing complexity for low power wireless sensors or other IEEE 802.15.4e based networks using Time-Slotted Channel Hopping (TSCH) communications.
Abstract:
An optimal frequency hopping sequence (FHS) is proposed. The FHSs can be generated with low computation complexity using the disclosed FHS generation mechanism. The sequence generation according to the embodiments provides a way to generate optimal FHS when channel-number is power of 2 using only 1 sequence. This gives an efficient way to generate optimal FHSs with frequent used channel-numbers for example, channel-numbers 2, 4, 8, 16, and others. These FHSs also provide good interfering probability when channel-number is not a power of 2. This makes TSCH with blacklisting more suitable for IEEE 802.15.4e networks operating in the presence of interference due to decrease in power consumption.
Abstract:
A device operated in a network using a channel hopping communication protocol may select a channel for each transmission by first generating and storing a sequence of pseudo-random index numbers. A list of good channels is selected from a plurality of channels. For each channel hop, one of the good channels is selected from the list of good channels for use by a transceiver in the device by using an index number selected from the sequence of pseudo-random index numbers. The list of good channels may be revised periodically and channels may be selected from the list of good channels for use by the transceiver without revising the sequence of pseudo-random index numbers.
Abstract:
Disclosed examples include methods and network devices for communicating in a wireless network, in which the device generates frequency hopping sequence y(j) having a prime number sequence length p, using cyclotomic classes in a field of p or using a baby-step giant-step algorithm, where y(0)=p−1 and the remaining sequence values y(j)=logα(j) mod (p−1). In certain examples, α=2 and the sequence is generated without solving logarithms using one or more algorithms to conserve memory and processing complexity for low power wireless sensors or other IEEE 802.15.4e based networks using Time-Slotted Channel Hopping (TSCH) communications.