Abstract:
Apparatus and methods are described for creating multiple different heads-up display (HUD) images at different apparent distances from a viewer using a single picture generator. First and second images are generated using respective first and second subsets of modulating elements of an array of image pixel modulating elements of a spatial light modulator. Light from the first and second images is directed along respective first and second optical paths onto a transparent display surface to form respective first and second virtual images at different apparent distances within a field of view of a viewer looking through the display surface. In a described example, the modulating elements are micromirrors of a digital micromirror device (DMD) and optical elements of the respective optical paths are relatively movable to set relative path lengths.
Abstract:
Described examples include a device having a prism cube having a first side and a second side opposite the first side, the prism cube configured to: receive light comprising a first color light and a second color light, direct the first color light to the first side of the prism cube, and direct the second color light to the second side of the prism cube.
Abstract:
In described examples, a method of creating multiple light images uses spatially-separated light sources, arranged in an array, operated in multiplexed fashion, for driving a spatial light modulator. Each of the light sources is time-sequenced to direct light at the spatial light modulator during a time interval. The spatial light modulator is synchronized with the light sources and controlled to produce a desired image during each time interval. The resulting images are received by an optical lens system to provide light images along an image plane. Alternately, the optical lens system focuses the modulated light images on a hogel plane to produce a light field. The pixel count of the spatial light modulator is effectively multiplied by the number of light sources.
Abstract:
A projector system with a single imaging array has a low-etendue light source. The projector system includes a first optical path from the low-etendue light source to a plurality of optical conversion media having a plurality of emission wavelengths to provide display light with wavelengths longer than blue light. The projector system includes a second optical path from the optical conversion media to the imaging array. The projector system has a means of moving an excitation location on the optical conversion media in the first optical path. The projector system may include a blue LED, a diffuser region, or an optical conversion medium with a blue emission wavelength to provide blue display light. Light from the low-etendue light source is prevented from directly impinging on the imaging array.
Abstract:
Described examples include an optical device having a first light source configured to provide a first light having a first characteristic. The optical device also has a second light source configured to provide a second light having a second characteristic. The optical device also has a combiner configured to combine the first light and the second light to provide a combined light. The optical device also has a spatial light modulator configured to modulate the combined light to provide modulated combined light. The optical device also has a divider configured to receive the modulated combined light and to direct a first portion of the modulated combined light having the first characteristic to a first target and to direct a second portion of the modulated combined light having the second characteristic to a second target.
Abstract:
Described examples include an optical device having a first light source configured to provide a first light having a first characteristic. The optical device also has a second light source configured to provide a second light having a second characteristic. The optical device also has a combiner configured to combine the first light and the second light to provide a combined light. The optical device also has a spatial light modulator configured to modulate the combined light to provide modulated combined light. The optical device also has a divider configured to receive the modulated combined light and to direct a first portion of the modulated combined light having the first characteristic to a first target and to direct a second portion of the modulated combined light having the second characteristic to a second target.
Abstract:
A projector system with a single imaging array has a low-etendue light source. The projector system includes a first optical path from the low-etendue light source to a plurality of optical conversion media having a plurality of emission wavelengths to provide display light with wavelengths longer than blue light. The projector system includes a second optical path from the optical conversion media to the imaging array. The projector system has a means of moving an excitation location on the optical conversion media in the first optical path. The projector system may include a blue LED, a diffuser region, or an optical conversion medium with a blue emission wavelength to provide blue display light. Light from the low-etendue light source is prevented from directly impinging on the imaging array.
Abstract:
Described examples include a device having a prism cube having a first side and a second side opposite the first side, the prism cube configured to: receive light comprising a first color light and a second color light, direct the first color light to the first side of the prism cube, and direct the second color light to the second side of the prism cube.
Abstract:
In described examples, a projector includes a light source to produce first light of a first color. The projector also includes a phosphor to selectively receive the first light and produce second light of a second color in response to the first light. The projector also includes a dichroic mirror to pass a portion of the second light to produce a third light of a third color. The dichroic mirror reflects a portion of the second light as fourth light of a fourth color.
Abstract:
Described examples include a projection system having projection optics with a projection optics axis tilted from an axis perpendicular to an image target, the projection optics configured to project an image. The projection system also having an image source, the image source configured to provide the image, the image source having an offset from the projection optics axis, a plane of the image source having an angle from perpendicular to the projection optics axis such that a projected image from the image source projected by the projection optics is focused onto the image target along an extent of the projected image.