Abstract:
Conductive concrete mixtures are described that are configured to provide EMP shielding and reflect and/or absorb, for instance, EM waves propagating through the conductive concrete mixture. The conductive concrete mixtures include cement, water, conductive carbon material, magnetic material, and metallic conductive material. The conductive carbon material may include conductive carbon particles, conductive carbon powder, and/or coke breeze. The metallic conductive material may include steel fibers, and the magnetic material may include taconite. The conductive concrete mixture may also include supplementary cementitious materials (SCM). A method of making a concrete structure includes pouring a concrete mixture to form conductive concrete, and positioning a first conductive screen within the conductive concrete proximate to an exterior surface of the conductive concrete. The method also includes positioning a second conductive screen within the conductive concrete in electrical contact with the first conductive screen.
Abstract:
Conductive concrete mixtures are described that are configured to provide EMP shielding and reflect and/or absorb, for instance, EM waves propagating through the conductive concrete mixture. The conductive concrete mixtures include cement, water, conductive carbon material, magnetic material, and metallic conductive material. The conductive carbon material may include conductive carbon particles, conductive carbon powder, and/or coke breeze. The metallic conductive material may include steel fibers, and the magnetic material may include taconite. The conductive concrete mixture may also include supplementary cementitious materials (SCM). A method of making a concrete structure includes pouring a concrete mixture to form conductive concrete, and positioning a first conductive screen within the conductive concrete proximate to an exterior surface of the conductive concrete. The method also includes positioning a second conductive screen within the conductive concrete in electrical contact with the first conductive screen.
Abstract:
An electrical filter is disclosed. The electrical filter can include a conductive concrete structure including at least one of a conductive carbon material, a magnetic material, or a conductive metallic material. The conductive concrete structure is characterized by an electrical conductivity greater than 0.5 siemens per meter. The electrical filter also includes at least one electrical cable disposed within the conductive concrete structure. The at least one electrical cable includes an input to receive an electrical signal and an output to output an attenuated electrical signal.
Abstract:
Conductive concrete mixtures are described that are configured to provide EMP shielding and reflect and/or absorb, for instance, EM waves propagating through the conductive concrete mixture. The conductive concrete mixtures include cement, aggregate, water, metallic conductive material, and conductive carbon particles and/or magnetic material. The conductive material may include steel fibers, and the magnetic material may include taconite aggregate. The conductive concrete mixture may also include graphite powder, silica fume, and/or other supplementary cementitious materials (SCM). The conductive carbon particles may comprise from about zero to twenty-five percent (0-25%) of the conductive concrete mixture by weight and/or the magnetic material may comprise from about zero to fifty percent (0-50%) of the conductive concrete mixture by weight.