Abstract:
System and methods for reducing the risks involved in trading multiple spread trading strategies in an electronic trading environment are provided. Specifically, reducing the risks involved in trading multiple spreads that share a leg by, among other things, quoting a single order in the shared leg instead of quoting orders for each of the corresponding spread legs. Based on the computed quote price for the single order, associating the single order with the leaned on price that results in the price closest to the inside market in the shared leg. The single quote order is based on the market conditions in the spread legs and the desired spread price. Once the single order fills, a hedge order is sent to the leg that obtains the most advantageous price for the spread based on the other spread options.
Abstract:
Market data is recorded from a real live exchange. The recording data can be played back in real time or delayed, in any manner, to simulate the recorded market. Moreover, one or more users can participate in the simulated market just as if they were participating in a real-live market. The system provides a realistic trading environment without the associated risks of trading in a live-market such as losing money and the cost of making trades. The system may be used for training purposes and for purposes of testing and analyzing various trading strategies. Software developers and testers may also utilize the realistic environment to develop trading products or applications. Additionally, the system provides a means for demonstrating trading application products.
Abstract:
A system and method are provided that, among other things, can reduce the burden on receiving computers, increase data throughput, reduce system failure, and provide components of a scalable and flexible network architecture. Specifically, the system and method provide a multichannel-multicast network environment for use in dynamically assigning data to channels. This configuration is particularly useful in a trading network environment, as it effectively performs channel reassignments in a way not to disturb the receipt of the underlying data. While the example embodiments described herein pertain to electronic trading, the principles of the present invention may be equally applied in other environments where the advantages presented herein are beneficial.
Abstract:
A system and method for defining and processing timed orders are defined. According to one embodiment, a trader may define a timed order by defining an intra-day time trigger or a time period when the timed order should be automatically modified, such as deleted or cancelled/replaced with a new order. In one embodiment, the intra-day time trigger or time period may be dynamically changed to a later time, for example, upon receiving a predetermined user input. Also, the time trigger and time period may be configured to dynamically vary based on any user configurable formula. Also, the timed order may be associated with one or more actions to be taken once the order is deleted, such as sending a new order, for example.
Abstract:
A system and methods for dynamically changing a trade order quantity in an electronic trading environment are described herein. According to one example embodiment, an automated trading tool determines if a leaned on quantity of a trading strategy has increased or decreased and if so, dynamically changing a desired order quantity to reflect the change in the leaned on quantity. Dynamically changing an order quantity may be more profitable for a trader as order queue position may be maintained and portion of the desired order quantity may get filled; rather than a trader losing their order queue position and/or taking a chance of not getting any of their order quantity filled.
Abstract:
A system and methods for dynamically changing a trade order quantity in an electronic trading environment are described herein. According to one example embodiment, an automated trading tool determines if a leaned on quantity of a trading strategy has increased or decreased and if so, dynamically changing a desired order quantity to reflect the change in the leaned on quantity. Dynamically changing an order quantity may be more profitable for a trader as order queue position may be maintained and portion of the desired order quantity may get filled; rather than a trader losing their order queue position and/or taking a chance of not getting any of their order quantity filled.
Abstract:
A system and associated methods are provided for intelligent placement and movement of orders in an electronic trading environment. According to one example method, in addition to submitting a leg order at a calculated price level, additional orders, queue holder orders, are submitted for the leg order at prices either below or above the calculated price level. Based on this configuration, if the conditions change such that it is necessary to re-price the leg order, there will be already an order resting in the exchange order book at the re-calculated price that can be used in the strategy. Upon re-pricing the leg order, one or more additional queue holder orders will be placed in the market. Other tools are provided as well.
Abstract:
A system and method are provided that, among other things, can reduce the burden on receiving computers, increase data throughput, reduce system failure, and provide components of a scalable and flexible network architecture. Specifically, the system and method provide a multichannel-multicast network environment for use in dynamically assigning data to channels. This configuration is particularly useful in a trading network environment, as it effectively performs channel reassignments in a way not to disturb the receipt of the underlying data. While the example embodiments described herein pertain to electronic trading, the principles of the present invention may be equally applied in other environments where the advantages presented herein are beneficial.
Abstract:
A system and method are provided that, among other things, can reduce the burden on receiving computers, increase data throughput, reduce system failure, and provide components of a scalable and flexible network architecture. Specifically, the system and method provide a multichannel-multicast network environment for use in dynamically assigning data to channels. This configuration is particularly useful in a trading network environment, as it effectively performs channel reassignments in a way not to disturb the receipt of the underlying data. While the example embodiments described herein pertain to electronic trading, the principles of the present invention may be equally applied in other environments where the advantages presented herein are beneficial.
Abstract:
A system and method are provided that, among other things, can reduce the burden on receiving computers, increase data throughput, reduce system failure, and provide components of a scalable and flexible network architecture. Specifically, the system and method provide a multichannel-multicast network environment for use in dynamically assigning data to channels. This configuration is particularly useful in a trading network environment, as it effectively performs channel reassignments in a way not to disturb the receipt of the underlying data. While the example embodiments described herein pertain to electronic trading, the principles of the present invention may be equally applied in other environments where the advantages presented herein are beneficial.