摘要:
An audio codec integrated with baseband processing and RF on a single IC chip. The audio codec may be implemented in a variety of wireless transceivers, such as cell phones, to offer voice, data and/or music functions. The codec also has monaural and stereo channels for audio output, as well as stereo inputs.
摘要:
An audio codec integrated with baseband processing and RF on a single IC chip. The audio codec may be implemented in a variety of wireless transceivers, such as cell phones, to offer voice, data and/or music functions. The codec also has monaural and stereo channels for audio output, as well as stereo inputs.
摘要:
Aspects of a method and/or system for processing high quality audio in a hardware audio CODEC for audio transmission are provided. In this regard, an audio signal may be down-sampled via a cascaded plurality of filters and sample rate converters in the hardware audio CODEC. Additionally, a portion of each sample of the audio signal may be selected based on an origin of the audio signal. The selected portion of each sample of the audio signal may comprise 16 or 18 bits. The selected portion may be determined based on a type, a class, a manufacturer identifier, and/or a model identifier of the origin the audio signal. Coefficients of the filters may be configured based on the origin of the audio signal. One or more of the filters may comprise one or more cascaded biquads. The sample rate converters may comprise one or more CIC decimation filters.
摘要:
Aspects of a method and system for dual voice path processing in an audio CODEC may enable selecting two or more signals received via one or more audio input devices, and filtering and down-sampling each of the selected signals via two or more signal processing branches. Furthermore, an output sample rate of each of the signal processing branches may be configured independently. The signal processing branches may each comprise one or more IIR filters with configurable coefficients and one or more cascaded-integrate-comb (CIC) decimation filters having a configurable decimation ratio. A first of the selected signals, may be filtered and/or down-sampled to generate a signal having a first, lower, sample rate, and a second of the signals may be filtered and/or down-sampled to generate a signal having a second, higher, sample rate. One or more post-processing algorithms such as audio beamforming may also be performed on the selected signals.
摘要:
Aspects of a method and/or system for processing high quality audio in a hardware audio CODEC for audio transmission are provided. In this regard, an audio signal may be down-sampled via a cascaded plurality of filters and sample rate converters in the hardware audio CODEC. Additionally, a portion of each sample of the audio signal may be selected based on an origin of the audio signal. The selected portion of each sample of the audio signal may comprise 16 or 18 bits. The selected portion may be determined based on a type, a class, a manufacturer identifier, and/or a model identifier of the origin the audio signal. Coefficients of the filters may be configured based on the origin of the audio signal. One or more of the filters may comprise one or more cascaded biquads. The sample rate converters may comprise one or more CIC decimation filters.
摘要:
Methods and systems for audio transmit loopback processing in an audio CODEC are disclosed and may include receiving digital audio signals to be transmitted via the wireless device, and looping back one or more of the signals to an output device via a switch matrix. One or more of the digital audio signals may be generated via a digital microphone, which may include a microelectromechanical (MEMS) microphone. The received digital audio signals may be filtered via decimation filters, which may include poly-phase filters. The received digital audio signals may be switched between phases of the poly-phase filters via an input switch, which may include CMOS transistors. One or more of the received digital audio signals may be generated from a received analog signal via an analog to digital converter (ADC), which may include a multi-channel ADC. The output device may include a wireless headset, loudspeaker and/or audio test equipment.
摘要:
A mobile device receives downlink transmissions comprising replicas of an original downlink transmitted signal over corresponding fingers of a RAKE receiver comprising arithmetic units. The RAKE receiver computes a cell normalization factor for each of active cells and neighbor cells associated with the RAKE receiver. The RAKE receiver uses the same arithmetic units comprising one adder, one multiplier, one divider and/or one square root unit to compute cell normalization factors. The received downlink transmitted signal is processed using the computed cell normalization factors. The RAKE receiver determines signal power from each of other cells, separately, to compute cell normalization factors to normalize fingers of the RAKE receiver. Interference over the normalized fingers are cancelled and used to process the received downlink transmitted signal, which are combined and Turbo decoded. Phase correction is performed over interference cancelled fingers for active cells, but need not be performed for neighbor cells.
摘要:
Aspects of a method and system for a programmable interference suppression module may include receiving a communication signal comprising one or more desired signal, and one or more undesired signals. The communication signal may be utilized to generate estimated channel state information. The estimated channel state information may be formatted for use in interference suppression. A reduced interference signal may be generated from a delayed version of said communications signal and the estimated channel state information, wherein the one or more undesired signals may be attenuated. The reduced interference signal may be formatted for post-processing. The desired signals may comprise WCDMA and/or HSDPA signals, and the undesired signals may be inter-cell and/or intra-cell interference. Further processing may comprise HSDPA processing and/or RAKE finger processing. The communication signal may be a Universal Mobile Telecommunication System (UMTS) compliant signal.
摘要:
Aspects of a method and system for channel estimation for interference suppression are provided. In this regard, one or more circuits and/or processors of a mobile communication device may generate and/or receive a first set of channel estimates and a second set of channel estimates. The one or more circuits and/or processors may modify the second set of channel estimates based on a comparison of a measure of correlation between the first set of channel estimates and the second set of channel estimates with a threshold. The first set of channel estimates and/or the modified second set of channel estimates may be utilized for cancelling interference in received signals. The first set of channel estimates may be associated with a first transmit antenna of a base transceiver station and the second set of channel estimates may be associated with a second transmit antenna of the base transceiver station.
摘要:
Aspects of a method and system for a programmable interference suppression module may include receiving a communication signal comprising one or more desired signal, and one or more undesired signals. The communication signal may be utilized to generate estimated channel state information. The estimated channel state information may be formatted for use in interference suppression. A reduced interference signal may be generated from a delayed version of said communications signal and the estimated channel state information, wherein the one or more undesired signals may be attenuated. The reduced interference signal may be formatted for post-processing. The desired signals may comprise WCDMA and/or HSDPA signals, and the undesired signals may be inter-cell and/or intra-cell interference. Further processing may comprise HSDPA processing and/or RAKE finger processing. The communication signal may be a Universal Mobile Telecommunication System (UMTS) compliant signal.