POWER PLANT CONTROL DEVICE WHICH USES A MODEL, A LEARNING SIGNAL, A CORRECTION SIGNAL, AND A MANIPULATION SIGNAL
    1.
    发明申请
    POWER PLANT CONTROL DEVICE WHICH USES A MODEL, A LEARNING SIGNAL, A CORRECTION SIGNAL, AND A MANIPULATION SIGNAL 有权
    使用模型,学习信号,校正信号和操纵信号的动力装置控制装置

    公开(公告)号:US20120166375A1

    公开(公告)日:2012-06-28

    申请号:US13415876

    申请日:2012-03-09

    IPC分类号: G06N3/08

    CPC分类号: G05B13/027

    摘要: A gas concentration estimation device of a coal-burning boiler adapted to estimate the concentration of the gas component included in an exhaust gas emitted from a coal-burning boiler using a neural network, including: a process database section adapted to store process data of a coal-burning boiler; a filtering processing section adapted to perform filtering processing for extracting data suitable for learning of a neural network from the process data stored in the process database section; a neural-network learning processing section adapted to perform learning processing of the neural network based on the data extracted by the filtering processing section and suitable for learning of the neural network; and a neural-network estimation processing section adapted to perform estimation processing of the CO concentration or the NOx concentration in the exhaust gas emitted from the coal-burning boiler based on the learning processing of the neural-network learning processing section.

    摘要翻译: 一种燃煤锅炉的气体浓度估计装置,其适用于使用神经网络来估计从燃煤锅炉排出的排气中所含的气体成分的浓度,所述气体成分估算装置包括:处理数据库部,其适于存储 燃煤锅炉; 滤波处理部,其适于进行从存储在所述处理数据库部中的处理数据中提取适于神经网络的学习的数据的滤波处理; 神经网络学习处理部分,适于基于由所述滤波处理部分提取并适合于所述神经网络的学习来执行所述神经网络的学习处理; 以及神经网络估计处理部,其基于神经网络学习处理部的学习处理,对从燃煤锅炉排出的排气中的CO浓度或NOx浓度进行估计处理。