Abstract:
An air removing device is connected to a tank to contain ink through a first supply tube, and an ink-jet head is connected to the air removing device through a second supply tube. The first supply tube and ink-jet head are heated and controlled. Air dissolved in ink is sucked out through a hollow fiber membrane provided in a housing by operating a vacuum pump by supplying ink to the hollow fiber membrane while heating and controlling atmosphere in the housing. Thus, air dissolved in ink is removed, and ink heated to a temperature suitable for ejection is supplied to the ink-jet head.
Abstract:
In an ink jet recording apparatus having two head units, each having a large number of ink nozzles arranged in a line, assembled so that they overlap with each other, an 8-shade image signal is entered into a correction circuit and a line direction position signal is input into a position signal decision circuit. When the position signal decision circuit decides that the position signal represents the overlapping zone of the head units, the shade level of the image signal is divided between the head units. For example, when the shade level of the image signal is 7, one of the head units is allotted the shade level and the other is allotted the shade level. The overlapping nozzles in a pair eject droplets of ink to form one dot.
Abstract:
An ink jet head is provided having ink chambers, energy-generating elements provided in the ink chambers, respectively, and ink outlet ports communicating with the ink chambers, respectively. The ink jet head may be left unused for a time longer than a predetermined time, with a meniscus formed in each ink outlet port. In this case, a drive pulse is applied to each energy-generating element several times, thereby forcing the ink outwards from the ink outlet ports and increasing a surface area of the ink from a surface area of the meniscus. Then, a negative pressure is applied in each ink chamber, thereby drawing the ink back toward the ink chambers, thus forming a meniscus again in the ink outlet ports. In this condition, a drive pulse is applied to the energy-generating elements, thus ejecting an ink droplet from the ink outlet ports to record data.
Abstract:
An air removing device is connected to a tank to contain ink through a first supply tube, and an ink-jet head is connected to the air removing device through a second supply tube. The first supply tube and ink-jet head are heated and controlled. Air dissolved in ink is sucked out through a hollow fiber membrane provided in a housing by operating a vacuum pump by supplying ink to the hollow fiber membrane while heating and controlling atmosphere in the housing. Thus, air dissolved in ink is removed, and ink heated to a temperature suitable for ejection is supplied to the ink-jet head.
Abstract:
An air removing device is connected to a tank to contain ink through a first supply tube, and an ink-jet head is connected to the air removing device through a second supply tube. The first supply tube and ink-jet head are heated and controlled. Air dissolved in ink is sucked out through a hollow fiber membrane provided in a housing by operating a vacuum pump by supplying ink to the hollow fiber membrane while heating and controlling atmosphere in the housing. Thus, air dissolved in ink is removed, and ink heated to a temperature suitable for ejection is supplied to the ink-jet head.
Abstract:
An image printing apparatus comprises a storage section and a control section. The storage section stores an absorbing speed information in a storage area, the absorption speed information is a measured speed at which a recording medium used for a printing process absorbs an ink used for the printing process. And the control section controls an ink head so as to perform first dot recording which records a plurality of dots on the recording medium by a pitch of an ink ejection opening of the ink head, and moves the recording medium relatively with the ink head and controls the ink head so as to perform second dot recording which records a plurality of dots between a plurality of dots recorded by first dot recording, in accordance with a print interval time determined based on the absorption speed information stored in the storage section.
Abstract:
An air removing device is connected to a tank to contain ink through a first supply tube, and an ink-jet head is connected to the air removing device through a second supply tube. The first supply tube and ink-jet head are heated and controlled. Air dissolved in ink is sucked out through a hollow fiber membrane provided in a housing by operating a vacuum pump by supplying ink to the hollow fiber membrane while heating and controlling atmosphere in the housing. Thus, air dissolved in ink is removed, and ink heated to a temperature suitable for ejection is supplied to the ink-jet head.
Abstract:
An ink jet head having ink chambers, energy-generating elements provided in the ink chambers, respectively, and ink outlet ports communicating with the ink chambers, respectively. The ink jet head may be left unused for a time longer than a predetermined time, with a meniscus formed in each ink outlet port. In this case, a drive pulse is applied to each energy-generating element several times, thereby forcing the ink outwards from the ink outlet port and increasing a surface area of the ink from a surface area of the meniscus. Then, a negative pressure is applied in each ink chamber, thereby drawing the ink back toward the ink chamber, thus forming a meniscus again in the ink outlet port. In this condition, a drive pulse is applied to the energy-generating element, thus ejecting an ink droplet from the ink outlet port to record data.
Abstract:
According to one embodiment, an aqueous inkjet ink includes a dispersion medium that contains water and a water-soluble polyhydric alcohol having a weight average molecular weight of 400 or more, and a pigment. The pigment accounts for less than 5 mass % of the total amount of the aqueous inkjet ink. The aqueous inkjet ink has viscosities (mPa·s) measured using a cone-plate type viscometer at 20 rpm and satisfying the following relationships: VA/VB≧1.5 VA≧10 mPa·s 3 mPa·s≦VB≦15 mPa·s, where VA is the viscosity at 30° C., and VB the viscosity at 45° C.
Abstract:
The image forming apparatus includes an upstream side chamber arranged further on an upstream side with respect to an ink flowing direction than a head in a circulating path and configured to temporarily store the ejection liquid that should be supplied to the head through the circulating path, a downstream side chamber arranged further on a downstream side than the head and further on the upstream side than the upstream side chamber in the circulating path and configured to temporarily store the ejection liquid collected from the head, and a pressure-difference adjusting mechanism configured to form a first pressure state in which the pressure in the downstream side chamber is lower than the pressure in the upstream side chamber and the head and a second pressure state in which the pressure in the upstream side chamber is lower than the pressure in the downstream side chamber.