摘要:
[Problem to be Solved] To provide an organic electroluminescence device with heat resistance capable of being driven by a low voltage.[Solution] An organic electroluminescence device includes a pair of anode and cathode opposed to each other; and a plurality of organic semiconductor layers layered or disposed between the anode and the cathode, the organic semiconductor layers including a light-emitting layer. At least one of the organic semiconductor layers contains a bulky organic semiconductor compound having an aromatic multi-membered ring structure and at least three aromatic substituents bonded thereto. Each of the aromatic substituents is arranged in a manner that a dihedral angle between a ring plane of the aromatic multi-membered ring structure and the ring plane of the aromatic substituent is within 70 to 90° determined by a semiempirical molecular orbital calculation method.
摘要:
An organic electroluminescence device includes a plurality of organic semiconductor layers including an organic light-emitting layer and layered or disposed between a pair of anode and cathode opposed to each other. The device includes n-type-dopant-containing electron transport layer disposed between the cathode and the organic light-emitting layer. The n-type-dopant-containing electron transport layer includes an organic compound capable of transporting electrons as a first component which mixed with an n-type dopant of an electron donor of metallic atom or ion thereof as a second component. The organic electroluminescence device further includes an n-type-dopant blocking layer having an interface contacting with the n-type-dopant-containing electron transport layer to block the n-type dopant. The n-type-dopant blocking layer includes a heavy atom compound including at least one kind of heavy atoms with an atomic weight of 79 or more.
摘要:
An organic electroluminescence device includes a plurality of organic semiconductor layers including an organic light-emitting layer and layered or disposed between a pair of anode and cathode opposed to each other. The device includes n-type-dopant-containing electron transport layer disposed between the cathode and the organic light-emitting layer. The n-type-dopant-containing electron transport layer includes an organic compound capable of transporting electrons as a first component which mixed with an n-type dopant of an electron donor of metallic atom or ion thereof as a second component. The organic electroluminescence device further includes an n-type-dopant blocking layer having an interface contacting with the n-type-dopant-containing electron transport layer to block the n-type dopant. The n-type-dopant blocking layer includes a heavy atom compound including at least one kind of heavy atoms with an atomic weight of 79 or more.
摘要:
Disclosed is an organic electroluminescent device (organic EL device) which is improved in luminous efficiency, fully secure of driving stability, and of a simple configuration. The organic EL device comprises organic layers comprising a hole-transporting layer and a light-emitting layer sandwiched between an anode and a cathode. The light-emitting layer contains a fluorescent light-emitting material and an electron- and/or exciton-blocking layer containing an indolocarbazole derivative represented by general formula (2) is disposed between the hole-transporting layer and the light-emitting layer so as to be adjacent to the light-emitting layer. In general formula (2), ring B is a heterocyclic ring fused to the adjacent rings and represented by formula (1c), Z is an n-valent aromatic hydrocarbon group or aromatic heterocyclic group, and n is 1 or 2.
摘要:
Disclosed is an organic electroluminescent device (organic EL device) that is improved in the luminous efficiency, fully secured of the driving stability, and of a simple structure. The organic EL device comprises a light-emitting layer between an anode and a cathode piled one upon another on a substrate and the said light-emitting layer comprises (A) a phosphorescent dopant whose emission peak wavelength is longer than 600 nm and (B) a host material. The host material contains at least two kinds of compounds selected from two or more kinds of derivatives included in (b1) N-substituted indolocarbazole derivatives, (b2) derivatives of 8-hydroxyquinoline aluminum complex, and (b3) bisindolocarbazole derivatives.
摘要:
Provided is an organic electroluminescent device (organic EL device), which has improved luminous efficiency, shows sufficiently ensured driving stability, and has a simple construction. The organic electroluminescent device includes an anode, a cathode, and organic layers including a hole-transporting layer and a light-emitting layer, the organic layers being interposed between the anode and the cathode, in which the light-emitting layer contains a phosphorescent light-emitting material and the hole-transporting layer and the light-emitting layer have an electron- and/or exciton-blocking layer therebetween, the electron- and/or exciton-blocking layer being adjacent to the light-emitting layer and containing an indolocarbazole compound represented by the general formula (2). In the formula, a ring B represents a heterocycle represented by the formula (1c) to be fused with adjacent rings, Z represents an n-valent aromatic hydrocarbon group or an aromatic heterocyclic group, and n represents 1 or 2.
摘要:
Disclosed is an organic electroluminescent device (organic EL device) which is improved in luminous efficiency, fully secure of driving stability, and of a simple configuration. The organic EL device comprises organic layers comprising a hole-transporting layer and a light-emitting layer sandwiched between an anode and a cathode. The light-emitting layer contains a fluorescent light-emitting material and an electron- and/or exciton-blocking layer containing an indolocarbazole derivative represented by general formula (2) is disposed between the hole-transporting layer and the light-emitting layer so as to be adjacent to the light-emitting layer. In general formula (2), ring B is a heterocyclic ring fused to the adjacent rings and represented by formula (1c), Z is an n-valent aromatic hydrocarbon group or aromatic heterocyclic group, and n is 1 or 2.
摘要:
Provided is an organic electroluminescent device (organic EL device), which has improved luminous efficiency, shows sufficiently ensured driving stability, and has a simple construction. The organic electroluminescent device includes an anode, a cathode, and organic layers including a hole-transporting layer and a light-emitting layer, the organic layers being interposed between the anode and the cathode, in which the light-emitting layer contains a phosphorescent light-emitting material and the hole-transporting layer and the light-emitting layer have an electron- and/or exciton-blocking layer therebetween, the electron- and/or exciton-blocking layer being adjacent to the light-emitting layer and containing an indolocarbazole compound represented by the general formula (2). In the formula, a ring B represents a heterocycle represented by the formula (1c) to be fused with adjacent rings, Z represents an n-valent aromatic hydrocarbon group or an aromatic heterocyclic group, and n represents 1 or 2.
摘要:
Disclosed is an organic electroluminescent device (organic EL device) that is improved in the luminous efficiency, fully secured of the driving stability, and of a simple structure. The organic EL device comprises a light-emitting layer between an anode and a cathode piled one upon another on a substrate and the said light-emitting layer comprises (A) a phosphorescent dopant whose emission peak wavelength is longer than 600 nm and (B) a host material. The host material contains at least two kinds of compounds selected from two or more kinds of derivatives included in (b1) N-substituted indolocarbazole derivatives, (b2) derivatives of 8-hydroxyquinoline aluminum complex, and (b3) bisindolocarbazole derivatives.
摘要:
This invention relates to an organic electroluminescent element (organic EL element) utilizing phosphorescence which shows improved luminous efficiency and driving stability and has a simple structure. The organic EL element comprises an anode, organic layers containing a hole-transporting layer, a light-emitting layer, and an electron-transporting layer, and a cathode piled one upon another on a substrate with the hole-transporting layer disposed between the light-emitting layer and the anode and the electron-transporting layer disposed between the light-emitting layer and the cathode. The light-emitting layer contains a compound represented by the following general formula (I) as a guest material and an organic metal complex containing at least one metal selected from ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum, and gold as a guest material; in general formula (I), R1-R6 are independently hydrogen atoms, alkyl groups, aralkyl groups, alkenyl groups, cyano groups, alkoxy groups, aromatic hydrocarbon groups, or aromatic heterocyclic groups.