摘要:
A process for producing molten iron with a combination of a moving-hearth reducing furnace and an iron bath-type melting furnace includes a step of charging a bedding carbonaceous material having an average particle diameter of 1 to 5 mm on a hearth of the moving-hearth reducing furnace and placing carbonaceous material-containing agglomerates containing a powdery iron oxide source and a powdery carbonaceous reductant on the bedding carbonaceous material; a step of thermally reducing the carbonaceous material-containing agglomerates while moving the hearth in the moving-hearth reducing furnace to generate solid reduced iron and simultaneously thermally carbonizing the bedding carbonaceous material to generate char; a step of continuously charging the solid reduced iron and the char into the iron bath-type melting furnace from thereabove without substantial cooling; and a step of blowing oxygen-containing gas into the iron bath-type melting furnace to melt the solid reduced iron and to thereby generate molten iron. According to this method, the amount of carbonaceous materials scattered into discharge gas can be significantly reduced and the yield of carbonaceous materials of the whole process can be improved.
摘要:
A bedding carbonaceous material is charged onto a hearth of a rotary hearth furnace, carbonaceous-material containing pellets containing powdery iron ore and powdery coal are placed on the bedding carbonaceous material, and the hearth is caused to pass inside the rotary hearth furnace to heat and reduce the carbonaceous-material containing pellets to solid reduced iron and to heat and dry the bedding carbonaceous material by distillation into char. Subsequently, the solid reduced iron and the char are charged into an iron-melting furnace without being substantially cooled, and an oxygen gas is blown into the iron-melting furnace to melt the solid reduced iron, thereby obtaining molten iron. At least a part of an exhaust gas from the iron-melting furnace is used as a fuel gas for the rotary hearth furnace after being cooled and having dust removed.
摘要:
A process for producing molten iron with a combination of a moving-hearth reducing furnace and an iron bath-type melting furnace that includes charging a bedding carbonaceous material on a hearth of the moving-hearth reducing furnace and placing carbonaceous material-containing agglomerates containing a powdery iron oxide source and a powdery carbonaceous reductant on the bedding carbonaceous material; thermally reducing the carbonaceous material-containing agglomerates while moving the hearth in the moving-hearth reducing furnace to generate solid reduced iron and simultaneously thermally carbonizing the bedding carbonaceous material to generate char; hot-forming the solid reduced iron and the char into agglomerates without substantial cooling; continuously charging the agglomerates into the iron bath-type melting furnace from thereabove; and blowing oxygen-containing gas into the iron bath-type melting furnace to melt the solid reduced iron and to thereby generate molten iron.
摘要:
The disclosure relates to improvements of technology for producing metallic iron by thermally reducing an iron source such as iron ore with a carbonaceous reductant such as coke by including efficiently reducing iron oxides into metallic iron at a lower operation temperature while conducting carburization, and efficiently separating the generated metallic iron from slag-forming components such as gangue components contained in raw material ore whereby metallic iron with controlled carbon concentrations can be produced in high yield.
摘要:
A process for producing molten iron with a combination of a moving-hearth reducing furnace and an iron bath-type melting furnace includes a step of charging a bedding carbonaceous material having an average particle diameter of 1 to 5 mm on a hearth of the moving-hearth reducing furnace and placing carbonaceous material-containing agglomerates containing a powdery iron oxide source and a powdery carbonaceous reductant on the bedding carbonaceous material; a step of thermally reducing the carbonaceous material-containing agglomerates while moving the hearth in the moving-hearth reducing furnace to generate solid reduced iron and simultaneously thermally carbonizing the bedding carbonaceous material to generate char; a step of continuously charging the solid reduced iron and the char into the iron bath-type melting furnace from thereabove without substantial cooling; and a step of blowing oxygen-containing gas into the iron bath-type melting furnace to melt the solid reduced iron and to thereby generate molten iron. According to this method, the amount of carbonaceous materials scattered into discharge gas can be significantly reduced and the yield of carbonaceous materials of the whole process can be improved.
摘要:
The present invention provides a method for efficiently manufacturing a titanium oxide-containing slag from a material including titanium oxide and iron oxide, wherein a reduction of titanium dioxide is suppressed and the electric power consumption is minimized. The method includes the steps of: heating a raw material mixture including titanium oxide, iron oxide, and a carbonaceous reductant, or the raw material mixture further including a calcium oxide source, in a reducing furnace; reducing the iron oxide in the mixture to form reduced iron; feeding the resultant mixture to a heating melting furnace; heating the resultant mixture in the heating melting furnace to melt the reduced iron and separate the reduced iron from a titanium oxide-containing slag; and discharging and recovering the titanium oxide-containing slag out of the furnace.
摘要:
The present invention provides a method for producing a high-quality reduced metal using an upgraded coal as a carbonaceous material to be incorporated. In the method, coal is first aged by heating in an organic solvent to produce upgraded coal for metallurgy having higher thermal plasticity than that of the coal. Then, a mixture of the upgraded coal for metallurgy and a metal oxide-containing raw material is agglomerated by an agglomerator, and the resultant agglomerates are reduced by heating in a furnace and then melted by further heating to produce a reduced melt. The reduced melt is cooled and solidified in the furnace to produce a reduced solid. The reduced solid is discharged to the outside of the furnace and slag is removed using a screen to recover a metal as a reduced metal.
摘要:
An object of the present invention is to provide a method for reducing a chromium-containing material at a high chromium reduction degree. In the method of the present invention, a mixture of a feedstock containing chromium oxide and a carbonaceous reductant is heated and reduced by radiation heating in a moving hearth furnace. The average rate of raising the temperature of the mixture in the reduction is preferably 13.96° C./s or higher in the period from the initiation of the radiation heating of the mixture until the mixture reaches 1,114° C.
摘要:
A method for manufacturing a reduced metal includes thermally reducing a metal oxide including a carbonaceous reductant disposed on a hearth moving in a reducing furnace, wherein the reducing furnace includes a plurality of primary burners for supplying fuel and primary combustion air, and a plurality of secondary combustion burners for supplying secondary combustion air; and wherein the primary combustion air and/or the secondary combustion air is oxygen-enriched air, the oxygen concentration in the primary combustion air supplied from at least one of the plurality of primary burners being controlled to be lower than the oxygen concentration in the secondary combustion air.
摘要:
A method for producing an iron oxide pellet including the steps of adding water to a raw material mixture comprising iron oxide which serves as a primary component, a carbonaceous material in an amount sufficient for reducing the iron oxide, an organic binder in an amount sufficient for binding the iron oxide and the carbonaceous material, and an inorganic coagulant in an amount of not less than 0.05 mass % and less than 1 mass %; pelletizing the resultant mixture to thereby obtain a green pellet; and drying the green pellet until the moisture content is reduced to equal to or less than 1.0 mass %. The thus-produced iron oxide pellet is charged in a reducing furnace for reduction to thereby obtain a reduced iron pellet.