Abstract:
An imaging device includes a lens unit and a device body detachably joined with each other. The lens unit includes an optical lens, an image sensor capturing an optical lens image of a subject having transmitted through the optical lens and outputting an output signal, and an image processing unit executing a plurality of image processings on image data generated from the output signal of the image sensor. The device body includes a display unit displaying the image data, a storage unit storing an image file containing the image data and an image processing unit having a substantially same image processing function as that of the lens unit and executing a plurality of image processings on the image data. The imaging device is configured that the image processings to execute on the image data are changeably allocated to the image processing units of the lens unit and the device body.
Abstract:
An imaging device includes a lens unit and a device body detachably joined with each other. The lens unit includes an optical lens, an image sensor capturing an optical lens image of a subject having transmitted through the optical lens and outputting an output signal, and an image processing unit executing a plurality of image processings on image data generated from the output signal of the image sensor. The device body includes a display unit displaying the image data, a storage unit storing an image file containing the image data and an image processing unit having a substantially same image processing function as that of the lens unit and executing a plurality of image processings on the image data. The imaging device is configured that the image processings to execute on the image data are changeably allocated to the image processing units of the lens unit and the device body.
Abstract:
The network system of the present invention is comprises lower segments constituted in each of a plurality of organizations, floors, offices, and an upper segment that connects the lower segments together. The network system comprises an improved L2 switch that is installed in each lower segment and has a function to transmit a frame, which is transmitted from other network devices of each lower segment to the improved L2 switch itself to a center device that is installed in upper segment; and the center device that is individually connected to the improved L2 switch and controls the data communication of the frame between the improved L2 switches. According to the present invention, a network system; wherein data communication can be performed easily between the lower segments, and an ideal data transfer system which can be prepared optionally by changing the center device characteristics when necessary, can be offered.
Abstract:
An ROI setting apparatus including an ROI recognition unit and an ROI control unit is provided. In one embodiment, the ROI recognition unit contains multiple ROI recognition modules for recognizing an ROI of image data according to various methods to obtain a recognition result. The ROI control unit selects one ROI recognition module out of the ROI recognition modules and sets ROI information based on the recognition result. The ROI recognition module may be selected according to an instruction from a user input via an operation unit, or a scene type selected by a scene selection switch of an image capture unit. The ROI control unit may perform operations such as selecting, enlarging, or reducing the ROI recognized by the ROI recognition module, or changing the ROI recognition conditions according to the respective instructions from the user input via the operation unit.
Abstract:
An image processing method generating a single image group file from a plurality of still images, by setting an output sequence of the plurality of still images, and adding data indicating a storage location of each of the still images according to the set output sequence, to a header portion of the file.
Abstract:
In response to a partial codestream truncation command, a partial codestream truncation process unit temporarily truncates a code line of encoded data. The partial codestream truncation process unit can also temporarily truncate the code line frame by frame. In response to an undo command, a restoration process unit restores the encoded data that has temporarily truncated code line. The temporarily truncated frames are included in a group of frames of the moving image. In response to an undo releasing command, a code line discarding unit discards the temporarily truncated code line or frames. The encoded data has a form of JPEG2000 or Motion-JPEG2000.
Abstract:
In response to a partial codestream truncation command, a partial codestream truncation process unit temporarily truncates a code line of encoded data. The partial codestream truncation process unit can also temporarily truncate the code line frame by frame. In response to an undo command, a restoration process unit restores the encoded data that has temporarily truncated code line. The temporarily truncated frames are included in a group of frames of the moving image. In response to an undo releasing command, a code line discarding unit discards the temporarily truncated code line or frames. The encoded data has a form of JPEG2000 or Motion-JPEG2000.
Abstract:
A management server communicable with a plurality of terminal devices, including a first terminal device, includes: a receiver to receive, from the first terminal device, shared information to be shared between the plurality of terminal devices, the shared information including first location information indicating a current location of the first terminal device, direction information indicating a direction that the first terminal device faces, and distance information indicating a distance from the first terminal device to a target destination; circuitry to generate target destination information including second location information indicating a location of the target destination based on the shared information received from the first terminal device; and a transmitter to transmit the target destination information to the plurality of terminal devices for display at the plurality of terminal devices.
Abstract:
An ROI setting apparatus including an ROI recognition unit and an ROI control unit is provided. In one embodiment, the ROI recognition unit contains multiple ROI recognition modules for recognizing an ROI of image data according to various methods to obtain a recognition result. The ROI control unit selects one ROI recognition module out of the ROI recognition modules and sets ROI information based on the recognition result. The ROI recognition module may be selected according to an instruction from a user input via an operation unit, or a scene type selected by a scene selection switch of an image capture unit. The ROI control unit may perform operations such as selecting, enlarging, or reducing the ROI recognized by the ROI recognition module, or changing the ROI recognition conditions according to the respective instructions from the user input via the operation unit.
Abstract:
A code stream generating part converts image data into two-dimensional wavelet coefficients, quantizes the same and coding the quantization result so as to compress the image data and generate a code stream. An additional information creating part creates additional information concerning the image data, and an additional information embedding part embeds the thus-created additional information into the code stream as a code in an off-rule zone which is not decoded by a JPEG 2000 standard rule.