摘要:
A game apparatus comprises an operation data acquiring means for acquiring operation data from a first input device including at least a first acceleration sensor and an angular velocity sensor and a second input device including at least a second acceleration sensor, and a game processing means for performing game processing on the basis of first acceleration data output from the first acceleration sensor, second acceleration data output from the second acceleration sensor, and angular velocity data from the angular velocity sensor, in the operation data.
摘要:
A game apparatus comprises an operation data acquiring means for acquiring operation data from a first input device including at least a first acceleration sensor and an angular velocity sensor and a second input device including at least a second acceleration sensor, and a game processing means for performing game processing on the basis of first acceleration data output from the first acceleration sensor, second acceleration data output from the second acceleration sensor, and angular velocity data from the angular velocity sensor, in the operation data.
摘要:
A game apparatus performs game processing on the basis of operation data output from a first input device including a first acceleration sensor and an angular velocity sensor and a second input device including a second acceleration sensor. The game apparatus calculates an orientation of an object within a game space on the basis of a first acceleration and a second acceleration, and causes the object to make a predetermined motion on the basis of the angular velocity data.
摘要:
A game apparatus performs game processing on the basis of operation data output from a first input device including a first acceleration sensor and an angular velocity sensor and a second input device including a second acceleration sensor. The game apparatus calculates an orientation of an object within a game space on the basis of a first acceleration and a second acceleration, and causes the object to make a predetermined motion on the basis of the angular velocity data.
摘要:
A game apparatus includes a CPU, and the CPU sets a moving direction, that is, a position and an orientation of a moving object within a game space on the basis of angular velocity data transmitted from a first controller, that is, an attitude of a gyro sensor unit (gyro sensor). Then, when a second controller is drawn toward a near side in a state that a C button and a Z button thereof are simultaneously pressed, and the C button and the Z button are simultaneously released in that state, the moving object is shot.
摘要:
A game apparatus includes a CPU, and the CPU controls a moving object within a virtual space on the basis of acceleration data and angular velocity data which are transmitted from a controller. For example, before the angular velocity data is above a predetermined magnitude, a position and an orientation of the moving object is controlled on the basis of the angular velocity data. When the angular velocity data is above the predetermined magnitude, an initial velocity of the moving object is decided on the basis of the acceleration data, and a moving direction (orientation) of the moving object is decided on the basis of the angular velocity data. Thereafter, the moving object moves within the virtual space according to a general physical behavior.
摘要:
A game apparatus includes a CPU, and the CPU sets a moving direction, that is, a position and an orientation of a moving object within a game space on the basis of angular velocity data transmitted from a first controller, that is, an attitude of a gyro sensor unit (gyro sensor). Then, when a second controller is drawn toward a near side in a state that a C button and a Z button thereof are simultaneously pressed, and the C button and the Z button are simultaneously released in that state, the moving object is shot.
摘要:
A game apparatus includes a CPU, and the CPU controls a moving object within a virtual space on the basis of acceleration data and angular velocity data which are transmitted from a controller. For example, before the angular velocity data is above a predetermined magnitude, a position and an orientation of the moving object is controlled on the basis of the angular velocity data. When the angular velocity data is above the predetermined magnitude, an initial velocity of the moving object is decided on the basis of the acceleration data, and a moving direction (orientation) of the moving object is decided on the basis of the angular velocity data. Thereafter, the moving object moves within the virtual space according to a general physical behavior.