摘要:
In the present invention, by making the width of the write element larger than the track pitch and securing a write magnetic field strong enough to reverse the magnetization of the magnetic layer, and further by writing while shifting a write head comprising the write element, a magnetic disk drive, of which the track width is narrower than the write element width, and the storage capacity is large, is realized.
摘要:
An information storage apparatus has a disk medium setting data recording areas along a plurality of tracks concentrically arranged, a head for recording and reproducing data on tracks of the disk medium, an actuator for moving the head to a desired track among the plurality of tracks. Also included is an electric circuit for controlling recording and reproducing in response to detecting the distance from a recorded magnetization pattern on an adjacent track in the radial direction by detecting previously recorded signals on adjacent tracks while data recording. Even if the track density is increased, the upper limit of a threshold value of a function for preventing off-track recording of the information storage apparatus can be increased and a high track density of the information storage apparatus can be easily realized.
摘要:
For the purpose of letting through a magnetic flux which reverses the magnetization of the magnetic layer of the magnetic disk, a write element requires a predetermined sectional area. However, if a cross section of a magnetic pole is structured as the one having a large aspect ratio, the pole becomes less capable of letting the magnetic flux through effectively. This phenomenon brings about a lower limit on the track width of the magnetic poles and the track density cannot be raised. In the present invention, by making the width of the write element larger than the track pitch and securing a write magnetic field strong enough to reverse the magnetization of the magnetic layer, and further by writing while shifting a write head comprising the write element, a magnetic disk drive, of which the track width is narrower than the write element width, and the storage capacity is large, is realized.
摘要:
In the present invention, by making the width of the write element larger than the track pitch and securing a write magnetic field strong enough to reverse the magnetization of the magnetic layer, and further by writing while shifting a write head comprising the write element, a magnetic disk drive, of which the track width is narrower than the write element width, and the storage capacity is large, is realized.
摘要:
When the amount of position error PE of a magnetic head meets the condition of Ewf>PE>=Eww for two threshold values Ewf and Eww meeting Ewf>Eww, the track is registered in the track information table as a track requiring rewrite and the tracks on both sides neighboring to the track are temporarily write-inhibited. The data of the track is rewritten on another track later so as to maintain the data. By doing this, the offtrack of the recording track can be made smaller without sacrifice of the access speed and the occurrence probability of write fault can be reduced. Furthermore, the reliability of a magnetic disk apparatus can be improved.
摘要:
When the amount of position error PE of a magnetic head meets the condition of Ewf>PE>=Eww for two threshold values Ewf and Eww meeting Ewf>Eww, the track is registered in the track information table as a track requiring rewrite and the tracks on both sides neighboring to the track are temporarily write-inhibited. The data of the track is rewritten on another track later so as to maintain the data. By doing this, the offtrack of the recording track can be made smaller without sacrifice of the access speed and the occurrence probability of write fault can be reduced. Furthermore, the reliability of a magnetic disk apparatus can be improved.
摘要:
In a method of servo writing of a magnetic recording system and the magnetic recording system, the signal is recorded in a dummy area with a higher recording density than the burst signal. Also, the maximum bit length of the burst area is shortened as compared with the maximum bit length of the data area. A servo control method for perpendicular recording similar to that for longitudinal recording can be used to reduce the development cost. The anti-signal decay performance is also improved. Further, since the variations of the burst signal along the track width is suppressed, the positioning accuracy is improved. These effects combine to produce a reliable magnetic recording system of large capacity.
摘要:
In a method of servo writing of a magnetic recording system and the magnetic recording system, the signal is recorded in a dummy area with a higher recording density than the burst signal. Also, the maximum bit length of the burst area is shortened as compared with the maximum bit length of the data area. A servo control method for perpendicular recording similar to that for longitudinal recording can be used to reduce the development cost. The anti-signal decay performance is also improved. Further, since the variations of the burst signal along the track width is suppressed, the positioning accuracy is improved. These effects combine to produce a reliable magnetic recording system of large capacity.
摘要:
In a method of servo writing of a magnetic recording system and the magnetic recording system, the signal is recorded in a dummy area with a higher recording density than the burst signal. Also, the maximum bit length of the burst area is shortened as compared with the maximum bit length of the data area. A servo control method for perpendicular recording similar to that for longitudinal recording can be used to reduce the development cost. The anti-signal decay performance is also improved. Further, since the variations of the burst signal along the track width is suppressed, the positioning accuracy is improved. These effects combine to produce a reliable magnetic recording system of large capacity.
摘要:
In a method of servo writing of a magnetic recording system and the magnetic recording system, the signal is recorded in a dummy area with a higher recording density than the burst signal. Also, the maximum bit length of the burst area is shortened as compared with the maximum bit length of the data area. A servo control method for perpendicular recording similar to that for longitudinal recording can be used to reduce the development cost. The anti-signal decay performance is also improved. Further, since the variations of the burst signal along the track width is suppressed, the positioning accuracy is improved. These effects combine to produce a reliable magnetic recording system of large capacity.