摘要:
Embodiments herein provide methods, apparatuses, and systems for detecting, monitoring, measuring, and/or characterizing the activity of phosphoproteins such as tyrosine kinases (TKs) and downstream proteins in TK signal transduction pathways (e.g., TK pathway proteins). In various embodiments, the methods, apparatuses, and systems may use nanoparticles, such as quantum dots (QD), to detect and/or characterize the abnormally overactive TK signaling pathways that underlie tumorgenesis and tumor progression. In various embodiments, the QD-based methods, apparatuses, and systems may have a sufficiently high degree of sensitivity to enable the identification of new TK signaling pathway markers, for example for use in diagnosing, staging, monitoring, and/or prognosing cancers, or in evaluating the efficacy of cancer therapeutics.
摘要:
Methods and systems for quantifying cellular activity using labeled probes, e.g., quantum dots, are disclosed. In one example approach, a method for quantifying cellular activity in a sample containing intact cells having labeled complexes comprises receiving images of the sample at a plurality of depths and detecting individual intact cells in the images of the sample at the plurality of depths. For each detected cell, discrete labels may be detected and localized in the cell at each depth, a total number of detected and localized labels may be calculated in the cell, and an activity level of the target molecule for the labeled probe in the cell determined.
摘要:
Methods and systems for quantifying cellular activity using labeled probes, e.g., quantum dots, are disclosed. In one example approach, a method for quantifying cellular activity in a sample containing intact cells having labeled complexes comprises receiving images of the sample at a plurality of depths and detecting individual intact cells in the images of the sample at the plurality of depths. For each detected cell, discrete labels may be detected and localized in the cell at each depth, a total number of detected and localized labels may be calculated in the cell, and an activity level of the target molecule for the labeled probe in the cell determined.
摘要:
Embodiments herein provide methods, apparatuses, and systems for detecting, monitoring, measuring, and/or characterizing the activity of phosphoproteins such as tyrosine kinases (TKs) and downstream proteins in TK signal transduction pathways (e.g., TK pathway proteins). In various embodiments, the methods, apparatuses, and systems may use nanoparticles, such as quantum dots (QD), to detect and/or characterize the abnormally overactive TK signaling pathways that underlie tumorgenesis and tumor progression. In various embodiments, the QD-based methods, apparatuses, and systems may have a sufficiently high degree of sensitivity to enable the identification of new TK signaling pathway markers, for example for use in diagnosing, staging, monitoring, and/or prognosing cancers, or in evaluating the efficacy of cancer therapeutics.
摘要:
Embodiments herein provide methods, apparatuses, and systems for detecting, monitoring, measuring, and/or characterizing the activity of phosphoproteins, such as tyrosine kinases (TKs) and downstream proteins in TK signal transduction pathways (e.g., TK pathway proteins). In various embodiments, the methods, apparatuses, and systems may use nanoparticles, such as quantum dots (QD), to detect and/or characterize the abnormally overactive TK signaling pathways that underlie tumorgenesis and tumor progression. In various embodiments, the QD-based methods, apparatuses, and systems may have a sufficiently high degree of sensitivity to enable the identification of new TK signaling pathway markers, for example for use in diagnosing, staging, monitoring, and/or prognosing cancers, or in evaluating the efficacy of cancer therapeutics.