摘要:
Many internet users consume content through online videos. For example, users may view movies, television shows, music videos, and/or homemade videos. It may be advantageous to provide additional information to users consuming the online videos. Unfortunately, many current techniques may be unable to provide additional information relevant to the online videos from outside sources. Accordingly, one or more systems and/or techniques for determining a set of additional information relevant to an online video are disclosed herein. In particular, visual, textual, audio, and/or other features may be extracted from an online video (e.g., original content of the online video and/or embedded advertisements). Using the extracted features, additional information (e.g., images, advertisements, etc.) may be determined based upon matching the extracted features with content of a database. The additional information may be presented to a user consuming the online video.
摘要:
Systems and methods for determining insertion points in a first video stream are described. The insertions points being configured for inserting at least one second video into the first video. In accordance with one embodiment, a method for determining the insertion points includes parsing the first video into a plurality of shots. The plurality of shots includes one or more shot boundaries. The method then determines one or more insertion points by balancing a discontinuity metric and an attractiveness metric of each shot boundary.
摘要:
Described is perceptually near-lossless video summarization for use in maintaining video summaries, which operates to substantially reconstruct an original video in a generally perceptually near-lossless manner. A video stream is summarized with little information loss by using a relatively very small piece of summary metadata. The summary metadata comprises an image set of synthesized mosaics and representative keyframes, audio data, and the metadata about video structure and motion. In one implementation, the metadata is computed and maintained (e.g., as a file) to summarize a relatively large video sequence, by segmenting a video shot into subshots, and selecting keyframes and mosaics based upon motion data corresponding to those subshots. The motion data is maintained as a semantic description associated with the image set. To reconstruct the video, the metadata is processed, including simulating motion using the image set and the semantic description, which recovers the audiovisual content without any significant information loss.
摘要:
Many internet users consume content through online videos. For example, users may view movies, television shows, music videos, and/or homemade videos. It may be advantageous to provide additional information to users consuming the online videos. Unfortunately, many current techniques may be unable to provide additional information relevant to the online videos from outside sources. Accordingly, one or more systems and/or techniques for determining a set of additional information relevant to an online video are disclosed herein. In particular, visual, textual, audio, and/or other features may be extracted from an online video (e.g., original content of the online video and/or embedded advertisements). Using the extracted features, additional information (e.g., images, advertisements, etc.) may be determined based upon matching the extracted features with content of a database. The additional information may be presented to a user consuming the online video.
摘要:
Described is a technology by which an image is classified (e.g., grouped and/or labeled), based on multi-label multi-instance data learning-based classification according to semantic labels and regions. An image is processed in an integrated framework into multi-label multi-instance data, including region and image labels. The framework determines local association data based on each region of an image. Other multi-label multi-instance data is based on relationships between region labels of the image, relationships between image labels of the image, and relationships between the region and image labels. These data are combined to classify the image. Training is also described.
摘要:
Visual concepts contained within a video clip are classified based upon a set of target concepts. The clip is segmented into shots and a multi-layer multi-instance (MLMI) structured metadata representation of each shot is constructed. A set of pre-generated trained models of the target concepts is validated using a set of training shots. An MLMI kernel is recursively generated which models the MLMI structured metadata representation of each shot by comparing prescribed pairs of shots. The MLMI kernel is subsequently utilized to generate a learned objective decision function which learns a classifier for determining if a particular shot (that is not in the set of training shots) contains instances of the target concepts. A regularization framework can also be utilized in conjunction with the MLMI kernel to generate modified learned objective decision functions. The regularization framework introduces explicit constraints which serve to maximize the precision of the classifier.
摘要:
Visual concepts contained within a video clip are classified based upon a set of target concepts. The clip is segmented into shots and a multi-layer multi-instance (MLMI) structured metadata representation of each shot is constructed. A set of pre-generated trained models of the target concepts is validated using a set of training shots. An MLMI kernel is recursively generated which models the MLMI structured metadata representation of each shot by comparing prescribed pairs of shots. The MLMI kernel is subsequently utilized to generate a learned objective decision function which learns a classifier for determining if a particular shot (that is not in the set of training shots) contains instances of the target concepts. A regularization framework can also be utilized in conjunction with the MLMI kernel to generate modified learned objective decision functions. The regularization framework introduces explicit constraints which serve to maximize the precision of the classifier.
摘要:
Techniques for recommending music and advertising to enhance a user's experience while photo browsing are described. In some instances, songs and ads are ranked for relevance to at least one photo from a photo album. The songs, ads and photo(s) from the photo album are then mapped to a style and mood ontology to obtain vector-based representations. The vector-based representations can include real valued terms, each term associated with a human condition defined by the ontology. A re-ranking process generates a relevancy term for each song and each ad indicating relevancy to the photo album. The relevancy terms can be calculated by summing weighted terms from the ranking and the mapping. Recommended music and ads may then be provided to a user, as the user browses a series of photos obtained from the photo album. The ads may be seamlessly embedded into the music in a nonintrusive manner.
摘要:
Video advertising overlay technique embodiments are presented that generally detect a set of spatio-temporal nonintrusive positions within a series of consecutive video frames in shots of a digital video and then overlay contextually relevant ads on these positions. In one general embodiment, this is accomplished by decomposing the video into a series of shots, and then identifying a video advertisement for each of a selected set of the shots. The identified video advertisement is one that is determined to be the most relevant to the content of the shot. An overlay area is also identified in each of the shots, where the selected overlay area is the least intrusive among a plurality of prescribed areas to a viewer of the video. The video advertisements identified for the shots are then respectively scheduled to be overlaid in the identified overlay area of a shot, whenever the shot is played.
摘要:
Techniques for recommending music and advertising to enhance a user's experience while photo browsing are described. In some instances, songs and ads are ranked for relevance to at least one photo from a photo album. The songs, ads and photo(s) from the photo album are then mapped to a style and mood ontology to obtain vector-based representations. The vector-based representations can include real valued terms, each term associated with a human condition defined by the ontology. A re-ranking process generates a relevancy term for each song and each ad indicating relevancy to the photo album. The relevancy terms can be calculated by summing weighted terms from the ranking and the mapping. Recommended music and ads may then be provided to a user, as the user browses a series of photos obtained from the photo album. The ads may be seamlessly embedded into the music in a nonintrusive manner.