Abstract:
A connector assembly includes a first and a second releasable and mateable connector. Each connector includes a front assembly composed of a manifold and a plurality of optical stems. Each manifold includes a plurality of inserts and a plurality of spherical seal assemblies. Each seal assembly is composed of a spherical ball, a ball dowel pin, and a ball actuator pin having a cam. Each spherical ball is configured to rotate about an axis defined by the two pins when the actuator pin cam traverses a groove fabricated in one of a plurality of guide rails disposed in the first connector. When the plurality of seal assemblies are in an open configuration, the optical stems of the first connector may slide through the inserts of the first connector, through the seals, and mate with the optical stems of the second connector within the inserts of the second connector.
Abstract:
The present invention generally relates to an inline pressure compensator that compensates for volumetric changes within Field-Assembled Cable Termination (FACT) structures when exposed to high pressures and extreme subsea depths by transferring a pressure compensating fluid into the internal cavity of the FACT. The present invention may comprise a flexible internal component and an outer shell-like component. The inner component may comprise two concentric rings of edge-welded bellows that are joined together and wrapped around inner components of the termination or of the inner portion of the outer component. The inner void in the bellows may be filled with pressure-compensating fluid. The pressure compensating fluid diffuses directly into the fluid-filled cavity of the termination assembly. The exterior component may comprise a housing adapted to protect the interior bellows component and provide for seawater to fill the space around the periphery of the bellows arrangement.