摘要:
Surface films, paints, or primers can be used in preparing aircraft structural composites that may be exposed to lightning strikes. Methods for making and using these films, paints or primers are also disclosed. The surface film can include a thermoset resin or polymer, e.g., an epoxy resin and/or a thermoplastic polymer, which can be cured, bonded, or painted on the composite structure. Low-density electrically conductive materials are disclosed, such as carbon nanofiber, copper powder, metal coated microspheres, metal-coated carbon nanotubes, single wall carbon nanotubes, graphite nanoplatelets and the like, that can be uniformly dispersed throughout or on the film. Low density conductive materials can include metal screens, optionally in combination with carbon nanofibers.
摘要:
Surface films, paints, or primers can be used in preparing aircraft structural composites that may be exposed to lightning strikes. Methods for making and using these films, paints or primers are also disclosed. The surface film can include a thermoset resin or polymer, e.g., an epoxy resin and/or a thermoplastic polymer, which can be cured, bonded, or painted on the composite structure. Low-density electrically conductive materials are disclosed, such as carbon nanofiber, copper powder, metal coated microspheres, metal-coated carbon nanotubes, single wall carbon nanotubes, graphite nanoplatelets and the like, that can be uniformly dispersed throughout or on the film. Low density conductive materials can include metal screens, optionally in combination with carbon nanofibers.
摘要:
Methods for enhancing the strength and stiffness of fibers, including nanoreinforced fibers and fiber tows, composite materials including the nanoreinforced fibers and tows, and articles of manufacture including the composite materials, are disclosed. The methods involve adhering random or aligned nanoreinforcement materials, such as carbon nanotubes, nanofibers, graphene plates, nanowires, nanoparticles, into or onto a spread carbon tow or yarn to form modified fibers wherein nanoreinforcement is adhered or trapped within the carbon tow. The carbon nanotubes or nanofibers can be aligned. Carbon fiber tows including the modified carbon fibers can be processed or woven for impregnation with a thermoset resin or thermoplastic to form a composite structure. The performance increase of the modified fibers relative to the unmodified fibers can be greater than the weight increase caused by the modification. Increased fiber stiffness and strength can result in a significant weight saving.
摘要:
This invention is directed to nacelles and nacelle components for use in aircraft engines. The nacelles and components comprise composite material containing carbon fiber. The carbon fiber comprises from 0.1 to 20 percent by weight nanoreinforcement material.
摘要:
This invention is directed to nacelles and nacelle components for use in aircraft engines. The nacelles and components comprise composite material containing carbon fiber. The carbon fiber comprises from 0.1 to 20 percent by weight nanoreinforcement material.