摘要:
A method for connecting adjacent computing board devices. A source computing board may be provided. An optical engine attaches to the source computing board. A plurality of source optical connectors couples to the optical engine. A first optical connector may be positioned at a location on the source computing board for a first preset type of computing component on an adjacent computing board. A second optical connector may be positioned at a fixed coordinate related to the first optical connector on the source computing board.
摘要:
A method for connecting adjacent computing board devices. A source computing board may be provided. An optical engine attaches to the source computing board. A plurality of source optical connectors couples to the optical engine. A first optical connector may be positioned at a location on the source computing board for a first preset type of computing component on an adjacent computing board. A second optical connector may be positioned at a fixed coordinate related to the first optical connector on the source computing board.
摘要:
A system (10) and methods (800, 900) for routing optical signals are disclosed. The system includes a large core hollow waveguide (30) having a reflective coating (40) covering an interior surface (32) of the hollow waveguide configured to guide a light beam (104). At least one area based beam splitter (50) is integrally formed with the hollow waveguide and has an angled reflective surface (52) with a selectable height (H) relative to the interior surface. The angled reflective surface is oriented to redirect a predetermined amount of the light beam (114) based on the height of the angled reflective surface.
摘要:
A system (10) and methods (800, 900) for routing optical signals are disclosed. The system includes a large core hollow waveguide (30) having a reflective coating (40) covering an interior surface (32) of the hollow waveguide configured to guide a light beam (104). At least one area based beam splitter (50) is integrally formed with the hollow waveguide and has an angled reflective surface (52) with a selectable height (H) relative to the interior surface. The angled reflective surface is oriented to redirect a predetermined amount of the light beam (114) based on the height of the angled reflective surface.
摘要:
An angled coupling for optical fibers can comprise a body (10) having an incoming aperture (18a) and an outgoing aperture (18b), from which an incoming hollow waveguide (12a) and an outgoing hollow waveguide (12b) extend into the body at an angle (22). A reflective surface (24) is situated at the vertex of the angle and is oriented substantially perpendicular to a bisector of the angle. The coupling also comprises an incoming coupling structure (32a) and an outgoing coupling structure (32b), each configured to attach an optical fiber to the corresponding aperture.
摘要:
A device for optically coupling two photonic elements may comprise an interposer where each photonic element is axially aligned with an optical pathway in the interposer. Also included is an optics assembly configured to direct a photonic signal along the optical pathway; and a mechanical guide assembly configured to reduce the relative tilt and rotation of photonic elements. Another such device may comprise two connectors where each connector comprises an optical pathway element in which an optics assembly is situated and a photonic element aligned with the optical pathway element. A mechanical guide assembly secures the optical pathway elements in a position so as to reduce the relative tilt and rotation of the photonic elements. A connection for optically coupling two computing units can comprise a partition situated between the computing units and on which an interposer is mounted.
摘要:
A device for optically coupling two photonic elements may comprise an interposer where each photonic element is axially aligned with an optical pathway in the interposer. Also included is an optics assembly configured to direct a photonic signal along the optical pathway; and a mechanical guide assembly configured to reduce the relative tilt and rotation of photonic elements. Another such device may comprise two connectors where each connector comprises an optical pathway element in which an optics assembly is situated and a photonic element aligned with the optical pathway element. A mechanical guide assembly secures the optical pathway elements in a position so as to reduce the relative tilt and rotation of the photonic elements. A connection for optically coupling two computing units can comprise a partition situated between the computing units and on which an interposer is mounted.
摘要:
An angled coupling for optical fibers can comprise a body (10) having an incoming aperture (18a) and an outgoing aperture (18b), from which an incoming hollow waveguide (12a) and an outgoing hollow waveguide (12b) extend into the body at an angle (22). A reflective surface (24) is situated at the vertex of the angle and is oriented substantially perpendicular to a bisector of the angle. The coupling also comprises an incoming coupling structure (32a) and an outgoing coupling structure (32b), each configured to attach an optical fiber to the corresponding aperture.
摘要:
A configurable optical communications system (100) for establishing point-to-point communications between multiple computer servers (160) coupled to a common midplane or backplane communications bus (132), wherein at least two of the servers include an optical input/output device (170) for sending and receiving an optical signal (112). The system further includes an optical communications pathway (140) that is configured to carry the optical signal, and at least two pivotable mirrors (150) located within the optical pathway and in-line with the optical input/output devices that are selectively orientated to direct the optical signal between the optical input/output devices to establish the point-to-point communication between the at least two servers.
摘要:
A configurable optical communications system (100) for establishing point-to-point communications between multiple computer servers (160) coupled to a common midplane or backplane communications bus (132), wherein at least two of the servers include an optical input/output device (170) for sending and receiving an optical signal (112). The system further includes an optical communications pathway (140) that is configured to carry the optical signal, and at least two pivotable mirrors (150) located within the optical pathway and in-line with the optical input/output devices that are selectively orientated to direct the optical signal between the optical input/output devices to establish the point-to-point communication between the at least two servers.