摘要:
A bit is assembled by forming the bit, including a bit body and a plurality of cutting components; embedding at least one electrical circuit into the bit, the circuit including a temperature sensor; and providing a module to monitor the circuits and generate an indication of bit wear. The electrical circuit may experience a change in resistance or conductivity due to wear of the bit and/or changes in an earth formation adjacent the bit. The bit wear and/or formation changes may be displayed for an operator.
摘要:
A bit is assembled by forming the bit, including a bit body and a plurality of cutting components; embedding at least one electrical circuit into the bit, the circuit including a temperature sensor; and providing a module to monitor the circuits and generate an indication of bit wear. The electrical circuit may experience a change in resistance or conductivity due to wear of the bit and/or changes in an earth formation adjacent the bit. The bit wear and/or formation changes may be displayed for an operator.
摘要:
In one aspect, the present disclosure provides an apparatus for determining formation density. One embodiment of the apparatus includes a bottomhole assembly having a drill bit attached to end thereof for drilling through a formation, a first sensor in the drill bit configured to provide first signals for determining a first density of the formation proximate to the drill, a second sensor distal from the first sensor configured to provide signals for determining density of a second density of the formation, and a processor configured to determine the formation density from the first density and the second density.
摘要:
In one aspect, the present disclosure provides an apparatus for determining formation density. One embodiment of the apparatus includes a bottomhole assembly having a drill bit attached to end thereof for drilling through a formation, a first sensor in the drill bit configured to provide first signals for determining a first density of the formation proximate to the drill, a second sensor distal from the first sensor configured to provide signals for determining density of a second density of the formation, and a processor configured to determine the formation density from the first density and the second density.
摘要:
A drill bit made according to one embodiment includes a source configured to induce radiation into a formation during drilling of a wellbore and a sensor in the drill bit configured to detect radiation from the formation responsive to the radiation induced by the source. The drill bit may further include a circuit configured to process signals received from the sensor to estimate a property of the formation.
摘要:
In one embodiment, an apparatus includes a drill bit, a tip on a bit body configured to contact a formation when the drill bit is utilized to cut into the formation, and a spring coupled to the tip. The apparatus also includes a sensor coupled to the spring and configured to provide signals corresponding to the displacement of the tip when the tip is in contact with the formation.
摘要:
A method of non-destructively identifying and characterizing defects in a rotary drill component is provided. The method includes providing a drill component and an ultrasonic test system including a phased array ultrasonic transducer (PAUT). The method also includes acoustically coupling the PAUT to a surface location, transmitting focused ultrasonic acoustic waves at the location into the PAUT and recording a reflected acoustic response corresponding to a portion of a predetermined volume of a microstructure of the component associated with the location on the surface. The method also includes storing the response and moving one of the transducer or the component to a plurality of unique locations representative of the predetermined microstructure and repeating these steps. The method also includes processing the responses and providing an output signal to an output device configured to provide an output indicative of differences in the output signal within the predetermined volume of the microstructure.
摘要:
A drill bit made according to one embodiment includes at least a gamma ray sensor configured to provide signals representative of a presence and/or amount of a naturally occurring gamma ray source when the drill bit is used for cutting into a formation. A circuit may be configured to process signals from the gamma ray sensor to provide an estimate a parameter relating to the naturally occurring gamma ray source, which may used for purposes such as optimizing drilling parameters and geosteering.
摘要:
A casing bit, which may comprise a composite structure, for drilling a casing section into a subterranean formation, and which may include a portion configured to be drilled therethrough, is disclosed. Cutting elements and methods of use are disclosed. Adhesive, solder, electrically disbonding material, and braze affixation of a cutting element are disclosed. Differing abrasive material amount, characteristics, and size of cutting elements are disclosed. Telescoping casing sections and bits are disclosed. Aspects and embodiments are disclosed including: at least one gage section extending from the nose portion, at least one rotationally trailing groove formed in at least one of the plurality of blades, a movable blade, a leading face comprising superabrasive material, at least one of a drilling fluid nozzle and a sleeve, grooves for preferential failure, at least one rolling cone affixed to the nose portion, at least one sensor, discrete cutting element retention structures, and percussion inserts.
摘要:
Apparatuses and methods for adjusting weight-on-bit/torque-on-bit sensor bias in a drill bit. The apparatus may include a bit adjustment device disposed at least partially in a cavity in a bit shank. The bit adjustment device includes electronics and sensors for estimating a weight-on-bit/torque-on-bit bias. The method includes adjusting the weight-on-bit/torque-on-bit sensor bias of a drill bit. The method may include adjusting force on a bit adjustment device to adjust weight-on-bit/torque-on-bit sensor bias. The method may also include securing the bit adjustment device within the cavity of the bit shank after the desired weight-on-bit/torque-on-bit sensor bias has been achieved.