摘要:
Embodiments disclosed in the detailed description include a telescoping fiber optic module. The telescoping fiber optic module may be provided in a fiber optic equipment chassis which may be disposed in an equipment rack to support fiber optic connections. In embodiments disclosed herein, the telescoping fiber optic module is comprised of a fixed housing portion having an opening on a front side defining a passage inside the fixed housing portion. The fiber optic module is also comprised of a telescoping portion received in the passage inside the fixed housing portion. In this manner, the telescoping portion can telescope in and out of the fixed housing portion. This allows fiber optic connectors or adapters disposed in the telescoping portion and any connections made thereto to be telescoped out for improved access and telescoped back into the fixed housing portion when access is no longer needed.
摘要:
Embodiments disclosed in the detailed description include a telescoping fiber optic module. The telescoping fiber optic module may be provided in a fiber optic equipment chassis which may be disposed in an equipment rack to support fiber optic connections. In embodiments disclosed herein, the telescoping fiber optic module is comprised of a fixed housing portion having an opening on a front side defining a passage inside the fixed housing portion. The fiber optic module is also comprised of a telescoping portion received in the passage inside the fixed housing portion. In this manner, the telescoping portion can telescope in and out of the fixed housing portion. This allows fiber optic connectors or adapters disposed in the telescoping portion and any connections made thereto to be telescoped out for improved access and telescoped back into the fixed housing portion when access is no longer needed.
摘要:
Furcation management structures and fiber optic shelf assemblies including one or more furcation management structures are disclosed. The furcation management structures are disposed in a chassis of a fiber optic shelf assembly and define a mounting surface for mounting at least one furcation body of a fiber optic cable assembly thereto. The furcation management structure may allow the fiber optic shelf assemblies to provide a greater density of fiber optic cable assemblies to support high density fiber optic equipment. Moreover, the furcation management structures provides the craft with an organized mounting structure that is relatively quick and easy to remove, rearrange, and/or reconfigure.
摘要:
Furcation management structures and fiber optic shelf assemblies including one or more furcation management structures are disclosed. The furcation management structures are disposed in a chassis of a fiber optic shelf assembly and define a mounting surface for mounting at least one furcation body of a fiber optic cable assembly thereto. The furcation management structure may allow the fiber optic shelf assemblies to provide a greater density of fiber optic cable assemblies to support high density fiber optic equipment. Moreover, the furcation management structures provides the craft with an organized mounting structure that is relatively quick and easy to remove, rearrange, and/or reconfigure.
摘要:
Fiber optic drawers supporting fiber optic modules are disclosed. The drawer is movable about a chassis. At least one fiber optic equipment tray is received in the drawer. The fiber optic equipment tray(s) is movable about the drawer and configured to receive at least one fiber optic module. The fiber optic module(s) is movable about a fiber optic equipment tray. In this manner, enhanced access can be provided to the fiber optic module(s) and their fiber optic connections. The drawer can moved out from the chassis to provide access to fiber optic equipment tray(s) and fiber optic module(s). The fiber optic equipment tray(s) can be moved out from the drawer to provide enhanced access to fiber optic module(s). The fiber optic module(s) can be moved from fiber optic equipment tray(s) to provide further enhanced access to fiber optic module(s). The drawer may also be tiltable about the chassis.
摘要:
Fiber optic drawers supporting fiber optic modules are disclosed. The drawer is movable about a chassis. At least one fiber optic equipment tray is received in the drawer. The fiber optic equipment tray(s) is movable about the drawer and configured to receive at least one fiber optic module. The fiber optic module(s) is movable about a fiber optic equipment tray. In this manner, enhanced access can be provided to the fiber optic module(s) and their fiber optic connections. The drawer can moved out from the chassis to provide access to fiber optic equipment tray(s) and fiber optic module(s). The fiber optic equipment tray(s) can be moved out from the drawer to provide enhanced access to fiber optic module(s). The fiber optic module(s) can be moved from fiber optic equipment tray(s) to provide further enhanced access to fiber optic module(s). The drawer may also be tiltable about the chassis.
摘要:
A cable routing guide having an arm with a first end and a second end is disclosed. The arm is adapted to attach the cable routing guide to a structure at the first end. A guide piece attaches to the arm at the second end. The guide piece has sides that enclose a passage adapted to receive at least one cable. The sides are concave, bowing toward the passage. The retainer is configured to maintain the at least one cable within the passage until the at least one cable is intentionally removed. The retainer has a retainer clip and/or a slot that allows the at least one cable to be received by the guide piece and to remain maintained within the guide piece until the at least one cable is intentionally removed. The slot may be at an angle to the longitudinal axis of the at least one cable. Additionally, the slot may be curvilinear or v-shaped. An attachment bracket connects to the first end of the arm. The attachment bracket may be connected at an angle to the longitudinal axis of the arm. The angle may be between about 0 degrees and 90 degrees. The cable routing guide may attach to the structure using the attachment bracket. A brace may be attached to the arm to support the cable routing guide.
摘要:
There is provided fiber optic hardware and hardware components adapted to provide a desired amount of fiber optic connectivity and/or functionality for a desired amount of volume, materials, etc. The fiber optic hardware components include, but are not limited to multiports, local convergence points (LCPs), particularly LCPs for multiple dwelling units or similar applications, network interface devices, equipment frames, and fiber distribution hubs. Certain fiber optic hardware components are adapted to accommodate microstructured optical fiber or other bend performance optical fiber.
摘要:
A pre-connectorized network interconnection apparatus including a housing defining at least one opening for mounting at least one adapter therein, a cable storage tray movably attached to the housing movable between an opened position and a closed position for cable access, and a predetermined length of pre-connectorized fiber optic cable maintained on the storage tray, wherein a first end of the fiber optic cable terminates in at least one connector routed to the at least one connector adapter within the apparatus and a second end of the fiber optic cable terminates in at least one connector that is routed to a predetermined location within a fiber optic network. A data center network apparatus for linking separated fiber optic connection points using a length of pre-connectorized fiber optic cable.
摘要:
Embodiments disclosed in the detailed description include fiber optic panels and related apparatuses configured to retain fiber optic components for establishing fiber optic connections. The fiber optic panels are configured such that the fiber optic components and any fiber optic connections made to the fiber optic components can be retained along a depth axis in a depth space of a chassis when the fiber optic panel is inserted into the chassis. The longitudinal axes of the fiber optic components are not parallel to the depth axis of the chassis. In this manner, the area of the depth space of the chassis is utilized to retain fiber optic components so that a greater density of fiber optic components can be supported by fiber optic panels for a given length of the chassis. The fiber optic panel may be any type of fiber optic patch panel or fiber optic module.