摘要:
An optical pickup converts a laser beam from a semiconductor laser (1) into a parallel ray with a collimator lens (2), and divides it into a main beam (30), a sub-beam (+1st order component) (31), and a sub-beam (−1st order component) (32) with a gradient multiple-division type phase difference grating (3). After passing through a beam splitter (4), an objective lens (5) condenses the light beams on a track (61) of an optical disc (6), and the reflected light that has passed through the objective lens 5 is reflected at the beam splitter (4) and is guided into optical detectors (8A, 8B, and 8C) by a condensing lens (7). Accordingly, in a tracking error signal detecting method using the push-pull signals of the main beam and sub-beams, an offset produced by an objective lens shift or a disc tilt can be cancelled at low cost without lowering the efficiency of using light.
摘要:
An optical pickup converts a laser beam from a semiconductor laser (1) into a parallel ray with a collimator lens (2), and divides it into a main beam (30), a sub-beam (+1st order component) (31), and a sub-beam (−1st order component) (32) with a gradient multiple-division type phase difference grating (3). After passing through a beam splitter (4), an objective lens (5) condenses the light beams on a track (61) of an optical disc (6), and the reflected light that has passed through the objective lens 5 is reflected at the beam splitter (4) and is guided into optical detectors (8A, 8B, and 8C) by a condensing lens (7). Accordingly, in a tracking error signal detecting method using the push-pull signals of the main beam and sub-beams, an offset produced by an objective lens shift or a disc tilt can be cancelled at low cost without lowering the efficiency of using light.
摘要:
An object of the present invention is to attain stable tracking servo performance by suppressing an offset caused by a shift of an object lens or a tilt of a disk, despite the one-beam method which does not cause reduction in light quantity of the main beam. A diffraction grating is provided between a hologram and a light receiving section, and a diffraction efficiency of the diffraction grating is varied in a grating longitudinal direction. For example, if an incident light beam on the diffraction grating is shifted in the grating longitudinal direction, the quantity of received light in each light receiving section varies to cause offset. By performing tracking servo so as to cancel the change, it is possible to correct the offset, thereby attaining stable tracking servo performance.
摘要:
There is provided an optical pickup apparatus that can obtain a stable servo signal by reducing stray light generated by diffraction in a recording layer other than a recording layer on which light is condensed. A hologram element provided in an optical pickup apparatus for recording information onto a recording medium and/or reproducing information on the recording medium by use of light includes fourth and fifth divisions where at least first-order diffracted light among diffracted light beams obtained by reflection and diffraction on a recording layer other than a light-condensed recording layer on which light is condensed by an objective lens so as not to be directed toward first and second light-receiving elements for detecting focus position information and third to eighth light-receiving elements for detecting track position information.
摘要:
An optical pickup device has a semiconductor laser emitting light which is in turn branched via a diffraction grating into at least three beams of light including a main beam and two sub beams which are in turn condensed via an objective lens on an optical disk at a guide groove and reflected by the optical disk to provide three reflections of light which are in turn received by detectors, each divided into two regions, respectively, to generate a tracking error signal. The diffraction grating is divided into three regions including a first region, a second region and a third region located intermediate therebetween, each having a periodical structure out of phase, the periodical structure having grating grooves in a direction determined depending on the phase of the second region to incline relative to a direction perpendicular to the guide groove of the optical disk.
摘要:
There is provided an optical pickup apparatus that can obtain a stable servo signal by reducing stray light generated by diffraction in a recording layer other than a recording layer on which light is condensed. A hologram element provided in an optical pickup apparatus for recording information onto a recording medium and/or reproducing information on the recording medium by use of light includes fourth and fifth divisions where at least first-order diffracted light among diffracted light beams obtained by reflection and diffraction on a recording layer other than a light-condensed recording layer on which light is condensed by an objective lens so as not to be directed toward first and second light-receiving elements for detecting focus position information and third to eighth light-receiving elements for detecting track position information.
摘要:
An optical pickup includes a hologram element. The hologram element is provided with a hologram pattern including a splitting section for focus which splits light used for the detection of an FES and a splitting section for tracking which splits light used for the detection of a TES. The splitting section for tracking is formed in a region excluding a region interposed between a first virtual straight line and a second virtual straight line. The first virtual straight line is drawn on the hologram element in parallel to an X direction and passes through an optical axis of reflected light entering the hologram element in a state where the objective lens is in a neutral position, and the second virtual straight line is drawn in parallel to the first virtual straight line, while being spaced at a distance d from the first virtual straight line.
摘要:
An optical pickup includes a hologram element. The hologram element is provided with a hologram pattern including a splitting section for focus which splits light used for the detection of an FES and a splitting section for tracking which splits light used for the detection of a TES. The splitting section for tracking is formed in a region excluding a region interposed between a first virtual straight line and a second virtual straight line. The first virtual straight line is drawn on the hologram element in parallel to an X direction and passes through an optical axis of reflected light entering the hologram element in a state where the objective lens is in a neutral position, and the second virtual straight line is drawn in parallel to the first virtual straight line, while being spaced at a distance d from the first virtual straight line.
摘要:
An optical pickup device has a semiconductor laser emitting light which is in turn branched via a diffraction grating into at least three beams of light including a main beam and two sub beams which are in turn condensed via an objective lens on an optical disk at a guide groove and reflected by the optical disk to provide three reflections of light which are in turn received by detectors, each divided into two regions, respectively, to generate a tracking error signal. The diffraction grating is divided into three regions including a first region, a second region and a third region located intermediate therebetween, each having a periodical structure out of phase, the periodical structure having grating grooves in a direction determined depending on the phase of the second region to incline relative to a direction perpendicular to the guide groove of the optical disk.
摘要:
An optical pickup can be provided, the optical pickup being capable of recording and playback of a plurality of optical disks having different specs by using light beams of different wavelengths, and further being suitable for integrating the semiconductor lasers and light receiving elements into a single package, by including: first and second semiconductor lasers adjacently disposed; a three-beam diffraction grating for generating three beams for tracking control; a second hologram element for diffracting light of the second semiconductor laser to guide it to a photosensor; a complex polarization beam splitter (PBS) for reflecting only light from the first semiconductor laser; and a first hologram element for diffracting light of the first semiconductor laser to guide it to the photosensor.