摘要:
An information recording method enables the precise formation of a recording mark on a recording layer having a high light transmittance such as an L1 layer of a double-layered optical recording medium. The information recording method uses the following recording strategy. A laser beam is pulse-modulated so as to create a pulse series including a write pulse of a recording power and a cooling pulse of a base power. Data to be recorded is modulated to have a length of a recording mark along a track of the recording layer. At the same time, the length of the recording mark is made to correspond to an integral multiple nT of T where T is one clock cycle. An nT recording mark corresponding to nT is recorded by using the same number of write pulses and cooling pulses when n is 4 or larger. Moreover, an average width AveTc for a single cooling pulse width Tc is set to satisfy: 1.0
摘要:
An information recording method enables the precise formation of a recording mark on a recording layer having a high light transmittance such as an L1 layer of a double-layered optical recording medium. The information recording method uses the following recording strategy. A laser beam is pulse-modulated so as to create a pulse series including a write pulse of a recording power and a cooling pulse of a base power. Data to be recorded is modulated to have a length of a recording mark along a track of the recording layer. At the same time, the length of the recording mark is made to correspond to an integral multiple nT of T where T is one clock cycle. An nT recording mark corresponding to nT is recorded by using the same number of write pulses and cooling pulses when n is 4 or larger. Moreover, an average width AveTc for a single cooling pulse width Tc is set to satisfy: 1.0
摘要:
A method of recording data on a double-layer optical recording medium having a recording layer with high light transmittance is provided. A laser beam is modulated to emit a pulse series of laser including a write pulse of a write power and a cooling pulse of a bottom power, so as to encode and write data to be recorded as recording marks of a length nT along a track of the recording layer, where n is an integer and T is one clock cycle. An nT recording mark is formed using (n−1) write pulse(s), and when forming a recording mark of 4 T or longer, a cooling pulse with a pulse width of 0.8 T to 2 T is inserted before the last write pulse. Recording marks are thereby accurately formed without heat interference between consecutive recording marks and cross erase between recording marks of adjacent tracks.
摘要:
A method of recording data on a double-layer optical recording medium having a recording layer with high light transmittance is provided. A laser beam is modulated to emit a pulse series of laser including a write pulse of a write power and a cooling pulse of a bottom power, so as to encode and write data to be recorded as recording marks of a length nT along a track of the recording layer, where n is an integer and T is one clock cycle. An nT recording mark is formed using (n-1) write pulse(s), and when forming a recording mark of 4 T or longer, a cooling pulse with a pulse width of 0.8 T to 2 T is inserted before the last write pulse. Recording marks are thereby accurately formed without heat interference between consecutive recording marks and cross erase between recording marks of adjacent tracks.
摘要:
A multilayer optical recording medium is provided with a totally reflective first information layer provided on a substrate and a second information layer being a translucent information layer provided via a spacer layer. The second information layer is composed of a TiO2 layer, a first dielectric layer, a reflective film, a second dielectric layer, a recording film, and a third dielectric layer, all of which are laminated together in this order. The first dielectric layer is made of ZrO2, Cr2O3, and Al2O3, and has a refractive index in the range of 1.84 to 2.20. If the recoding film is made of a material containing Sb as a main component, it is possible to strike a balance between high values of both the transmittance and the degree of modulation in recording information by laser light with a wavelength of 405 nm using an optical recording system having an optical system with a numerical aperture NA=0.85.
摘要翻译:多层光学记录介质设置有设置在基板上的全反射第一信息层,第二信息层是通过间隔层提供的半透明信息层。 第二信息层由TiO 2层,第一电介质层,反射膜,第二电介质层,记录膜和第三电介质层组成,所有这些层叠在一起 这个命令。 第一电介质层由ZrO 2,Cr 2 O 3 O 3和Al 2 O 3 O 3, 3,折射率在1.84〜2.20的范围内。 如果记录膜由含有Sb作为主要成分的材料制成,则可以通过使用光学器件的波长为405nm的激光在记录信息中的透射率和调制度的高值之间取得平衡 具有数值孔径NA = 0.85的光学系统的记录系统。
摘要:
A holographic multiplex recording method which can keep a recording data rate constant and equalize nonuniformity in recording due to vibrations or the like, and a holographic recording apparatus and a holographic recording medium, which employ the method. In a process of multiplex-recording information, the time of exposure to a laser beam per data page is kept constant, and the laser output power of the laser beam is increased in accordance with a decrease in recording sensitivity of the holographic recording medium.
摘要:
A holographic multiplex recording method which can keep a recording data rate constant and equalize nonuniformity in recording due to vibrations or the like, and a holographic recording apparatus and a holographic recording medium, which employ the method. In a process of multiplex-recording information, the time of exposure to a laser beam per data page is kept constant, and the laser output power of the laser beam is increased in accordance with a decrease in recording sensitivity of the holographic recording medium.
摘要:
A holographic recording medium 10 is configured to have a recording layer 12 on which information can be recorded as holograms; and first and second heat generating layers 14A and 14B provided in a pair so as to sandwich the recording layer 12. Then, the first and second heat generating layers 14A and 14B are allowed to generate heat by being irradiated with a heat generating laser beam LB3 having a wavelength that is different from that of a signal beam LB1 or a reference beam LB2 for reproducing or recording information. The holographic recording medium and a method for recording and reproducing the same, and a recording and reproducing apparatus can compensate for shrinkage of the recording layer due to recording or variations in temperature, thereby allowing for reproduction of the holograms under optimum conditions.
摘要:
A method for initializing recording films of an optical recording medium includes two recording layers each including a recording film and which is formed so that a transparent intermediate layer is interposed between each adjacent pair of the recording layers, by projecting a laser beam whose power can be controlled within a predetermined range onto the recording films and simultaneously crystallizing and initializing the recording films, the method for initializing recording films of an optical recording medium including steps of setting a power of the laser beam and a position of a focus of the laser beam so that energy of the laser beam projected onto each of the recording films is equal to or higher than a minimum initialization energy which can crystallize and initialize the recording film irradiated with the laser beam, and projecting the laser beam onto the recording films of the optical recording medium. According to this method, it is possible to efficiently simultaneously crystallize and initialize recording films of the two recording layers of an optical recording medium with an apparatus of simple structure.
摘要:
A holographic recording method, a holographic recording apparatus, a holographic recording and reproducing method, a holographic recording and reproducing apparatus, and a holographic recording medium for recording information in an angle multiplex fashion as a hologram in a first format in which either one of signal light and reference light branched out from a laser light source is made to cross the other in a recording layer at a predetermined incidence angle and the incidence angle is changed at a predetermined angular pitch, or in a second format of higher angular selectivity, wherein the incidence angle when recording information in the second format of higher angular selectivity can be adjusted to cover an incidence angle that satisfies the Bragg's condition when recording in the first format, thereby ensuring reproduction compatibility between media of different angular selectivities.